摘要:介绍是基于深度学习端到端的实时目标检测系统,将目标区域预测和目标类别预测整合于单个神经网络模型中,实现在准确率较高的情况下快速目标检测与识别,更加适合现场应用环境。总结本篇文章主要是快速上手,我们通过很少的代码就能实现不错的目标检测。
介绍
YOLO是基于深度学习端到端的实时目标检测系统,YOLO将目标区域预测和目标类别预测整合于单个神经网络模型中,实现在准确率较高的情况下快速目标检测与识别,更加适合现场应用环境。本案例,我们快速实现一个视频目标检测功能,实现的具体原理我们将在多带带的文章中详细介绍。
下载编译我们首先下载Darknet开发框架,Darknet开发框架是YOLO大神级作者自己用C语言编写的开发框架,支持GPU加速,有两种下载方式:
下载Darknet压缩包
git clone https://github.com/pjreddie/darknet
下载后,完整的文件内容,如下图所示:
编译:
cd darknet # 编译 make
编译后的文件内容,如下图所示:
下载权重文件我们这里下载的是“yolov3”版本,大小是200多M,“yolov3-tiny”比较小,30多M。
wget https://pjreddie.com/media/files/yolov3.weights
下载权重文件后,文件内容如下图所示:
上图中的“yolov3-tiny.weights”,"yolov2-tiny.weights"是我多带带另下载的。
C语言预测./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg
如图所示,我们已经预测出三种类别以及对应的概率值。模型输出的照片位于darknet根目录,名字是“predictions.jpg”,如下图所示:
让我们打开模型输出照片看下:
Python语言预测我们首先需要将“darknet”文件夹内的“libdarknet.so”文件移动到“darknet/python”内,完成后如下图所示:
我们将使用Darknet内置的“darknet.py”,进行预测。预测之前,我们需要对文件进行修改:
默认py文件基于python2.0,所以对于python3.0及以上需要修改print
由于涉及到python和C之间的传值,所以字符串内容需要转码
使用绝对路径
修改完成后,如下图所示:
打开“darknet/cfg/coco.data”文件,将“names”也改为绝对路径(截图内没有修改,读者根据自己的实际路径修改):
我们可以开始预测了,首先进入“darknet/python”然后执行“darknet.py”文件即可:
结果如下图所示:
对模型输出的结果做个简单的说明,如:
# 分别是:类别,识别概率,识别物体的X坐标,识别物体的Y坐标,识别物体的长度,识别物体的高度 (b"dog", 0.999338686466217, (224.18377685546875, 378.4237060546875, 178.60214233398438, 328.1665954589844)视频检测
from ctypes import * import random import cv2 import numpy as np def sample(probs): s = sum(probs) probs = [a/s for a in probs] r = random.uniform(0, 1) for i in range(len(probs)): r = r - probs[i] if r <= 0: return i return len(probs)-1 def c_array(ctype, values): arr = (ctype*len(values))() arr[:] = values return arr class BOX(Structure): _fields_ = [("x", c_float), ("y", c_float), ("w", c_float), ("h", c_float)] class DETECTION(Structure): _fields_ = [("bbox", BOX), ("classes", c_int), ("prob", POINTER(c_float)), ("mask", POINTER(c_float)), ("objectness", c_float), ("sort_class", c_int)] class IMAGE(Structure): _fields_ = [("w", c_int), ("h", c_int), ("c", c_int), ("data", POINTER(c_float))] class METADATA(Structure): _fields_ = [("classes", c_int), ("names", POINTER(c_char_p))] lib = CDLL("../python/libdarknet.so", RTLD_GLOBAL) lib.network_width.argtypes = [c_void_p] lib.network_width.restype = c_int lib.network_height.argtypes = [c_void_p] lib.network_height.restype = c_int predict = lib.network_predict predict.argtypes = [c_void_p, POINTER(c_float)] predict.restype = POINTER(c_float) set_gpu = lib.cuda_set_device set_gpu.argtypes = [c_int] make_image = lib.make_image make_image.argtypes = [c_int, c_int, c_int] make_image.restype = IMAGE get_network_boxes = lib.get_network_boxes get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(c_int), c_int, POINTER(c_int)] get_network_boxes.restype = POINTER(DETECTION) make_network_boxes = lib.make_network_boxes make_network_boxes.argtypes = [c_void_p] make_network_boxes.restype = POINTER(DETECTION) free_detections = lib.free_detections free_detections.argtypes = [POINTER(DETECTION), c_int] free_ptrs = lib.free_ptrs free_ptrs.argtypes = [POINTER(c_void_p), c_int] network_predict = lib.network_predict network_predict.argtypes = [c_void_p, POINTER(c_float)] reset_rnn = lib.reset_rnn reset_rnn.argtypes = [c_void_p] load_net = lib.load_network load_net.argtypes = [c_char_p, c_char_p, c_int] load_net.restype = c_void_p do_nms_obj = lib.do_nms_obj do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float] do_nms_sort = lib.do_nms_sort do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float] free_image = lib.free_image free_image.argtypes = [IMAGE] letterbox_image = lib.letterbox_image letterbox_image.argtypes = [IMAGE, c_int, c_int] letterbox_image.restype = IMAGE load_meta = lib.get_metadata lib.get_metadata.argtypes = [c_char_p] lib.get_metadata.restype = METADATA load_image = lib.load_image_color load_image.argtypes = [c_char_p, c_int, c_int] load_image.restype = IMAGE rgbgr_image = lib.rgbgr_image rgbgr_image.argtypes = [IMAGE] predict_image = lib.network_predict_image predict_image.argtypes = [c_void_p, IMAGE] predict_image.restype = POINTER(c_float) def convertBack(x, y, w, h): xmin = int(round(x - (w / 2))) xmax = int(round(x + (w / 2))) ymin = int(round(y - (h / 2))) ymax = int(round(y + (h / 2))) return xmin, ymin, xmax, ymax def array_to_image(arr): # need to return old values to avoid python freeing memory arr = arr.transpose(2,0,1) c, h, w = arr.shape[0:3] arr = np.ascontiguousarray(arr.flat, dtype=np.float32) / 255.0 data = arr.ctypes.data_as(POINTER(c_float)) im = IMAGE(w,h,c,data) return im, arr def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45): im, image = array_to_image(image) rgbgr_image(im) num = c_int(0) pnum = pointer(num) predict_image(net, im) dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, None, 0, pnum) num = pnum[0] if nms: do_nms_obj(dets, num, meta.classes, nms) res = [] for j in range(num): a = dets[j].prob[0:meta.classes] if any(a): ai = np.array(a).nonzero()[0] for i in ai: b = dets[j].bbox res.append((meta.names[i], dets[j].prob[i], (b.x, b.y, b.w, b.h))) res = sorted(res, key=lambda x: -x[1]) if isinstance(image, bytes): free_image(im) free_detections(dets, num) return res if __name__ == "__main__": cap = cv2.VideoCapture(0) ret, img = cap.read() fps = cap.get(cv2.CAP_PROP_FPS) net = load_net(b"/Users/xiaomingtai/darknet/cfg/yolov2-tiny.cfg", b"/Users/xiaomingtai/darknet/yolov2-tiny.weights", 0) meta = load_meta(b"/Users/xiaomingtai/darknet/cfg/coco.data") cv2.namedWindow("img", cv2.WINDOW_NORMAL) while(True): ret, img = cap.read() if ret: r = detect(net, meta, img) for i in r: x, y, w, h = i[2][0], i[2][17], i[2][18], i[2][19] xmin, ymin, xmax, ymax = convertBack(float(x), float(y), float(w), float(h)) pt1 = (xmin, ymin) pt2 = (xmax, ymax) cv2.rectangle(img, pt1, pt2, (0, 255, 0), 2) cv2.putText(img, i[0].decode() + " [" + str(round(i[1] * 100, 2)) + "]", (pt1[0], pt1[1] + 20), cv2.FONT_HERSHEY_SIMPLEX, 1, [0, 255, 0], 4) cv2.imshow("img", img) if cv2.waitKey(1) & 0xFF == ord("q"): break
模型输出结果:
模型视频检测结果:
没有GPU的条件下还是不要选择yolov3了,很慢。
总结本篇文章主要是YOLO快速上手,我们通过很少的代码就能实现不错的目标检测。当然,想熟练掌握YOLO,理解背后的原理是十分必要的,下篇文章将会重点介绍YOLO原理。
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/42839.html
摘要:本文将介绍如何使用其他数据集重新训练模型,文章将会详细介绍每一步。下载数据集我们将使用数据集训练我们的模型,该数据集可以用来做图像分类目标检测图像分割。模型训练完成后,权重文件保存路径。 介绍 showImg(https://segmentfault.com/img/bVblwDQ?w=460&h=302); YOLO目标检测快速上手这篇文章我们通过简短的代码就实现了一个视频目标检测功...
阅读 1630·2021-10-27 14:13
阅读 1867·2021-10-11 10:59
阅读 3366·2021-09-24 10:26
阅读 1925·2019-08-30 12:48
阅读 3040·2019-08-30 12:46
阅读 2032·2019-08-30 11:16
阅读 1414·2019-08-30 10:48
阅读 2740·2019-08-29 16:54