摘要:机器学习的出现让图像识别技术有了突破性的进展卷积神经网络的出现又使图像识别更上了一次层次。与其他深度学习结构相比,卷积神经网络在图像和语音识别方面能够给出更好的结果。这里我们使用卷积神经网络对人脸进行性别识别项目中使用了机器学习库。
原博地址https://laboo.top/2018/12/02/tfjs-face/#more
在传统编程中, 图像识别一直是一个难点, 虽然人能轻松做到, 但是用逻辑来描述这个过程, 并转换成程序是很难的。机器学习的出现让图像识别技术有了突破性的进展, 卷积神经网络的出现, 又使图像识别更上了一次层次。
卷积神经网络由一个或多个卷积层和顶端的全连通层组成, 这一结构使得卷积神经网络能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网络在图像和语音识别方面能够给出更好的结果。
这里我们使用卷积神经网络对人脸进行性别识别, 项目中使用了TensorFlow机器学习库。
项目地址face-gender-classification
数据收集与处理机器学习的基础就是大量的数据。我以前从网上爬了一万张证件照, 现在正好用上, 作为训练数据。
简便的也可以从谷歌直接搜搜索 男(女)性证件照也可以得到并且有标签的数据。
由于我收集的照片没有标签, 于是我花了一点时间从其中人工选出男女照片各200张并打上标记。
为了使识别更加准确, 项目中利用openCV裁剪出人脸部分的图像, 并缩放至28*28大小。
recognizer = cv2.CascadeClassifier("model/haarcascade_frontalface_default.xml") crop(img_path): try: img = cv2.imread(img_path) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = recognizer.detectMultiScale(gray) if len(faces): x, y, w, h = faces[0] c_img = img[y:y + h, x:x + w] return cv2.resize(c_img, (28, 28), interpolation=cv2.INTER_AREA) except: pass return None
对所有的数据都进行这样处理, 结果如下:
最后我们还需要清理异常的数据, 过一遍训练集, 把其中没有定位到人脸的图片去除掉。
读取训练数据。
def read_img(files): arr = [] for file in files: img = Image.open("%s" % file) pix = img.load() view = np.zeros((IMAGE_H, IMAGE_W, 1), dtype=np.float) for x in range(IMAGE_H): for y in range(IMAGE_W): r, g, b = pix[y, x] view[x, y, 0] = (r + g + b) // 3 arr.append(view) return np.array(arr)
这里对训练图像灰度化, 并且将训练数据中的一小部分作为验证集。
开始创建模型。
model = keras.Sequential([ keras.layers.Conv2D(32, (3, 3), input_shape=(IMAGE_W, IMAGE_H, 1), strides=(1, 1), activation="relu"), keras.layers.MaxPool2D(pool_size=(2, 2)), keras.layers.Conv2D(64, (3, 3), strides=(1, 1), activation="relu"), keras.layers.MaxPool2D(pool_size=(2, 2)), keras.layers.Flatten(), keras.layers.Dense(128, activation=tf.nn.relu), keras.layers.Dropout(0.2), keras.layers.Dense(2, activation=tf.nn.softmax) ])
选择适当的优化器和损失函数编译模型。
model.compile(optimizer=tf.train.AdamOptimizer(learning_rate=0.001), loss="categorical_crossentropy", metrics=["accuracy"])
开始训练模型。
model.fit(x=train_x, y=train_y, batch_size=32, epochs=30, verbose=1, callbacks=my_callbacks, validation_split=0.05, shuffle=True )测试模型
这里使用matplotlib来显示测试图片及结果。
predictions = model.predict(test_x) class_names = ["Female", "Male"] plt.figure(figsize=(12, 6)) for i in range(min(9, len(test_y))): result = predictions[i] max_label = int(np.argmax(result)) correct_label = int(np.argmax(test_y[i])) plt.subplot(3, 6, 2 * i + 1) plt.grid(False) plt.xticks([]) plt.yticks([]) img = test_x.reshape(test_x.shape[0], IMAGE_W, IMAGE_H)[i] plt.imshow(img, cmap="gray") plt.xlabel("{} - prob:{:2.0f}%".format(class_names[max_label], 100 * np.max(result))) plt.subplot(3, 6, 2 * i + 2) plt.grid(False) plt.yticks([]) plt.ylim([0, 1]) bar = plt.bar(range(2), result) bar[max_label].set_color("red") bar[correct_label].set_color("green") plt.show()
脸部头像右侧的两列分别代表女性概率和男性概率。
这里我们看到全都对了, 正确率非常高。
模型并不复杂, 大部分工作都在收集数据和调整训练参数上, 这也体现出了卷积神经网络对图像强大的处理能力。
欢迎关注我的博客公众号
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/42731.html
摘要:本文内容节选自由主办的第七届,分享的实录。据美国纽约时报报道,人工智能的测试会根据肤色种族,出现不同的错误率。微软在美国工时比较长,而在欧洲工作时间有严格的要求,我们需要花费时间磨合并找到共同的时间。 showImg(https://segmentfault.com/img/bVbm2f7?w=1080&h=720); 本文内容节选自由msup主办的第七届TOP100summit,Mi...
摘要:的发布已经有一些时日,其主要的提供的能力是给予前端直接可用的特征检测的接口包括条形码人脸文本检测。本文将简单的对其进行介绍,对前端进行人脸检测进行普适性的讲解。 Shape Detection API 的发布已经有一些时日,其主要的提供的能力是给予前端直接可用的特征检测的接口(包括条形码、人脸、文本检测)。本文将简单的对其进行介绍,对前端进行人脸检测进行普适性的讲解。(本文不讲算法~望...
阅读 1511·2021-08-09 13:47
阅读 2771·2019-08-30 15:55
阅读 3496·2019-08-29 15:42
阅读 1117·2019-08-29 13:45
阅读 3010·2019-08-29 12:33
阅读 1744·2019-08-26 11:58
阅读 985·2019-08-26 10:19
阅读 2412·2019-08-23 18:00