摘要:本篇内容为机器学习实战第章利用元算法提高分类性能程序清单。将当前错误率与已有的最小错误率进行对比后,如果当前的值较小,那么就在字典中保存该单层决策树。上述,我们已经构建了单层决策树,得到了弱学习器。
本篇内容为《机器学习实战》第 7 章利用 AdaBoost 元算法提高分类性能程序清单。所用代码为 python3。
AdaBoost
优点:泛化错误率低,易编码,可以应用在大部分分类器上,无参数调整。
缺点:对离群点敏感。
适用数据类型:数值型和标称型数据。
boosting 方法拥有多个版本,这里将只关注其中一个最流行的版本 AdaBoost。
在构造 AdaBoost 的代码时,我们将首先通过一个简单数据集来确保在算法实现上一切就绪。使用如下的数据集:
def loadSimpData(): datMat = matrix([[ 1. , 2.1], [ 2. , 1.1], [ 1.3, 1. ], [ 1. , 1. ], [ 2. , 1. ]]) classLabels = [1.0, 1.0, -1.0, -1.0, 1.0] return datMat,classLabels
在 python 提示符下,执行代码加载数据集:
>>> import adaboost >>> datMat, classLabels=adaboost.loadSimpData()
我们先给出函数buildStump()的伪代码:
""" Created on Sep 20, 2018 @author: yufei Adaboost is short for Adaptive Boosting """ """ 测试是否有某个值小于或大于我们正在测试的阈值 """ def stumpClassify(dataMatrix,dimen,threshVal,threshIneq):#just classify the data retArray = ones((shape(dataMatrix)[0],1)) if threshIneq == "lt": retArray[dataMatrix[:,dimen] <= threshVal] = -1.0 else: retArray[dataMatrix[:,dimen] > threshVal] = -1.0 return retArray """ 在一个加权数据集中循环 buildStump()将会遍历stumpClassify()函数所有的可能输入值 并找到具有最低错误率的单层决策树 """ def buildStump(dataArr,classLabels,D): dataMatrix = mat(dataArr); labelMat = mat(classLabels).T m,n = shape(dataMatrix) # 变量 numSteps 用于在特征的所有可能值上进行遍历 numSteps = 10.0 # 创建一个空字典,用于存储给定权重向量 D 时所得到的最佳单层决策树的相关信息 bestStump = {}; bestClasEst = mat(zeros((m,1))) # 初始化为正无穷大,之后用于寻找可能的最小错误率 minError = inf # 第一层循环在数据集的所有特征上遍历 for i in range(n):#loop over all dimensions rangeMin = dataMatrix[:,i].min(); rangeMax = dataMatrix[:,i].max(); # 计算步长 stepSize = (rangeMax-rangeMin)/numSteps # 第二层循环是了解步长后再在这些值上遍历 for j in range(-1,int(numSteps)+1):#loop over all range in current dimension # 第三个循环是在大于和小于之间切换不等式 for inequal in ["lt", "gt"]: #go over less than and greater than threshVal = (rangeMin + float(j) * stepSize) # 调用 stumpClassify() 函数,返回分类预测结果 predictedVals = stumpClassify(dataMatrix,i,threshVal,inequal)#call stump classify with i, j, lessThan errArr = mat(ones((m,1))) errArr[predictedVals == labelMat] = 0 weightedError = D.T*errArr #calc total error multiplied by D # print("split: dim %d, thresh %.2f, thresh ineqal: %s, the weighted error is %.3f" % (i, threshVal, inequal, weightedError)) # 将当前错误率与已有的最小错误率进行比较 if weightedError < minError: minError = weightedError bestClasEst = predictedVals.copy() bestStump["dim"] = i bestStump["thresh"] = threshVal bestStump["ineq"] = inequal return bestStump,minError,bestClasEst
为了解实际运行过程,在 python 提示符下,执行代码并得到结果:
>>> D=mat(ones((5,1))/5) >>> adaboost.buildStump(datMat, classLabels, D) split: dim 0, thresh 0.90, thresh ineqal: lt, the weighted error is 0.400 split: dim 0, thresh 0.90, thresh ineqal: gt, the weighted error is 0.600 split: dim 0, thresh 1.00, thresh ineqal: lt, the weighted error is 0.400 split: dim 0, thresh 1.00, thresh ineqal: gt, the weighted error is 0.600 split: dim 0, thresh 1.10, thresh ineqal: lt, the weighted error is 0.400 split: dim 0, thresh 1.10, thresh ineqal: gt, the weighted error is 0.600 split: dim 0, thresh 1.20, thresh ineqal: lt, the weighted error is 0.400 split: dim 0, thresh 1.20, thresh ineqal: gt, the weighted error is 0.600 split: dim 0, thresh 1.30, thresh ineqal: lt, the weighted error is 0.200 split: dim 0, thresh 1.30, thresh ineqal: gt, the weighted error is 0.800 split: dim 0, thresh 1.40, thresh ineqal: lt, the weighted error is 0.200 split: dim 0, thresh 1.40, thresh ineqal: gt, the weighted error is 0.800 split: dim 0, thresh 1.50, thresh ineqal: lt, the weighted error is 0.200 split: dim 0, thresh 1.50, thresh ineqal: gt, the weighted error is 0.800 split: dim 0, thresh 1.60, thresh ineqal: lt, the weighted error is 0.200 split: dim 0, thresh 1.60, thresh ineqal: gt, the weighted error is 0.800 split: dim 0, thresh 1.70, thresh ineqal: lt, the weighted error is 0.200 split: dim 0, thresh 1.70, thresh ineqal: gt, the weighted error is 0.800 split: dim 0, thresh 1.80, thresh ineqal: lt, the weighted error is 0.200 split: dim 0, thresh 1.80, thresh ineqal: gt, the weighted error is 0.800 split: dim 0, thresh 1.90, thresh ineqal: lt, the weighted error is 0.200 split: dim 0, thresh 1.90, thresh ineqal: gt, the weighted error is 0.800 split: dim 0, thresh 2.00, thresh ineqal: lt, the weighted error is 0.600 split: dim 0, thresh 2.00, thresh ineqal: gt, the weighted error is 0.400 split: dim 1, thresh 0.89, thresh ineqal: lt, the weighted error is 0.400 split: dim 1, thresh 0.89, thresh ineqal: gt, the weighted error is 0.600 split: dim 1, thresh 1.00, thresh ineqal: lt, the weighted error is 0.200 split: dim 1, thresh 1.00, thresh ineqal: gt, the weighted error is 0.800 split: dim 1, thresh 1.11, thresh ineqal: lt, the weighted error is 0.400 split: dim 1, thresh 1.11, thresh ineqal: gt, the weighted error is 0.600 split: dim 1, thresh 1.22, thresh ineqal: lt, the weighted error is 0.400 split: dim 1, thresh 1.22, thresh ineqal: gt, the weighted error is 0.600 split: dim 1, thresh 1.33, thresh ineqal: lt, the weighted error is 0.400 split: dim 1, thresh 1.33, thresh ineqal: gt, the weighted error is 0.600 split: dim 1, thresh 1.44, thresh ineqal: lt, the weighted error is 0.400 split: dim 1, thresh 1.44, thresh ineqal: gt, the weighted error is 0.600 split: dim 1, thresh 1.55, thresh ineqal: lt, the weighted error is 0.400 split: dim 1, thresh 1.55, thresh ineqal: gt, the weighted error is 0.600 split: dim 1, thresh 1.66, thresh ineqal: lt, the weighted error is 0.400 split: dim 1, thresh 1.66, thresh ineqal: gt, the weighted error is 0.600 split: dim 1, thresh 1.77, thresh ineqal: lt, the weighted error is 0.400 split: dim 1, thresh 1.77, thresh ineqal: gt, the weighted error is 0.600 split: dim 1, thresh 1.88, thresh ineqal: lt, the weighted error is 0.400 split: dim 1, thresh 1.88, thresh ineqal: gt, the weighted error is 0.600 split: dim 1, thresh 1.99, thresh ineqal: lt, the weighted error is 0.400 split: dim 1, thresh 1.99, thresh ineqal: gt, the weighted error is 0.600 split: dim 1, thresh 2.10, thresh ineqal: lt, the weighted error is 0.600 split: dim 1, thresh 2.10, thresh ineqal: gt, the weighted error is 0.400 ({"dim": 0, "thresh": 1.3, "ineq": "lt"}, matrix([[0.2]]), array([[-1.], [ 1.], [-1.], [-1.], [ 1.]]))
这一行可以注释掉,这里为了理解函数的运行而打印出来。
将当前错误率与已有的最小错误率进行对比后,如果当前的值较小,那么就在字典baseStump中保存该单层决策树。字典、错误率和类别估计值都会返回给 AdaBoost 算法。
上述,我们已经构建了单层决策树,得到了弱学习器。接下来,我们将使用多个弱分类器来构建 AdaBoost 代码。
首先给出整个实现的伪代码如下:
程序清单 7-2 基于单层决策树的 AdaBoost 训练过程""" 输入参数:数据集、类别标签、迭代次数(需要用户指定) """ def adaBoostTrainDS(dataArr,classLabels,numIt=40): weakClassArr = [] m = shape(dataArr)[0] # 向量 D 包含了每个数据点的权重,初始化为 1/m D = mat(ones((m,1))/m) #init D to all equal # 记录每个数据点的类别估计累计值 aggClassEst = mat(zeros((m,1))) for i in range(numIt): # 调用 buildStump() 函数建立一个单层决策树 bestStump,error,classEst = buildStump(dataArr,classLabels,D)#build Stump print ("D:",D.T) # 计算 alpha,本次单层决策树输出结果的权重 # 确保没有错误时不会发生除零溢出 alpha = float(0.5*log((1.0-error)/max(error,1e-16)))#calc alpha, throw in max(error,eps) to account for error=0 bestStump["alpha"] = alpha weakClassArr.append(bestStump) #store Stump Params in Array print("classEst: ",classEst.T) # 为下一次迭代计算 D expon = multiply(-1*alpha*mat(classLabels).T,classEst) #exponent for D calc, getting messy D = multiply(D,exp(expon)) #Calc New D for next iteration D = D/D.sum() #calc training error of all classifiers, if this is 0 quit for loop early (use break) # 错误率累加计算 aggClassEst += alpha*classEst print("aggClassEst: ",aggClassEst.T) # 为了得到二值分类结果调用 sign() 函数 aggErrors = multiply(sign(aggClassEst) != mat(classLabels).T,ones((m,1))) errorRate = aggErrors.sum()/m print ("total error: ",errorRate) # 若总错误率为 0,则中止 for 循环 if errorRate == 0.0: break return weakClassArr,aggClassEst
在 python 提示符下,执行代码并得到结果:
>>> classifierArray = adaboost.adaBoostTrainDS(datMat, classLabels, 9) D: [[0.2 0.2 0.2 0.2 0.2]] classEst: [[-1. 1. -1. -1. 1.]] aggClassEst: [[-0.69314718 0.69314718 -0.69314718 -0.69314718 0.69314718]] total error: 0.2 D: [[0.5 0.125 0.125 0.125 0.125]] classEst: [[ 1. 1. -1. -1. -1.]] aggClassEst: [[ 0.27980789 1.66610226 -1.66610226 -1.66610226 -0.27980789]] total error: 0.2 D: [[0.28571429 0.07142857 0.07142857 0.07142857 0.5 ]] classEst: [[1. 1. 1. 1. 1.]] aggClassEst: [[ 1.17568763 2.56198199 -0.77022252 -0.77022252 0.61607184]] total error: 0.0
最后,我们来观察测试错误率。
""" 将弱分类器的训练过程从程序中抽查来,应用到某个具体的实例上去。 datToClass: 一个或多个待分类样例 classifierArr: 多个弱分类器组成的数组 返回 aggClassEst 符号,大于 0 返回1;小于 0 返回 -1 """ def adaClassify(datToClass,classifierArr): dataMatrix = mat(datToClass)#do stuff similar to last aggClassEst in adaBoostTrainDS m = shape(dataMatrix)[0] aggClassEst = mat(zeros((m,1))) for i in range(len(classifierArr)): classEst = stumpClassify(dataMatrix, classifierArr[0][i]["dim"], classifierArr[0][i]["thresh"], classifierArr[0][i]["ineq"]) aggClassEst += classifierArr[0][i]["alpha"]*classEst print (aggClassEst) return sign(aggClassEst)
在 python 提示符下,执行代码并得到结果:
>>> datArr, labelArr = adaboost.loadSimpData() >>> classifierArr = adaboost.adaBoostTrainDS(datArr, labelArr, 30) D: [[0.2 0.2 0.2 0.2 0.2]] classEst: [[-1. 1. -1. -1. 1.]] aggClassEst: [[-0.69314718 0.69314718 -0.69314718 -0.69314718 0.69314718]] total error: 0.2 D: [[0.5 0.125 0.125 0.125 0.125]] classEst: [[ 1. 1. -1. -1. -1.]] aggClassEst: [[ 0.27980789 1.66610226 -1.66610226 -1.66610226 -0.27980789]] total error: 0.2 D: [[0.28571429 0.07142857 0.07142857 0.07142857 0.5 ]] classEst: [[1. 1. 1. 1. 1.]] aggClassEst: [[ 1.17568763 2.56198199 -0.77022252 -0.77022252 0.61607184]] total error: 0.0
输入以下命令进行分类:
>>> adaboost.adaClassify([0,0], classifierArr) [[-0.69314718]] [[-1.66610226]] matrix([[-1.]])
随着迭代的进行,数据点 [0,0] 的分类结果越来越强。也可以在其它点上分类:
>>> adaboost.adaClassify([[5,5],[0,0]], classifierArr) [[ 0.69314718] [-0.69314718]] [[ 1.66610226] [-1.66610226]] matrix([[ 1.], [-1.]])
这两个点的分类结果也会随着迭代的进行而越来越强。
参考链接:
GBDT,ADABOOSTING概念区分 GBDT与XGBOOST区别
【机器学习实战-python3】Adaboost元算法提高分类性能
$$$$
不足之处,欢迎指正。
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/42479.html
摘要:本篇内容为机器学习实战第章支持向量机部分程序清单。支持向量机优点泛化错误率低,计算开销不大,结果易解释。注以上给出的仅是简化版算法的实现,关于完整的算法加速优化并应用核函数,请参照机器学习实战第页。 本篇内容为《机器学习实战》第 6 章 支持向量机部分程序清单。所用代码为 python3。 支持向量机优点:泛化错误率低,计算开销不大,结果易解释。 缺点:对参数调节和核函数的选择敏感,...
摘要:根据错误率决定是否回退到训练阶段,通过改变迭代的次数和步长等参数来得到更好的回归系数。使用回归方法进行分类所需做的是把测试集上每个特征向量乘以最优化方法得来的回归系数,再将该乘积结果求和,最后输入到函数即可。 本篇内容为《机器学习实战》第 5 章 Logistic 回归程序清单。 书中所用代码为 python2,下面给出的程序清单是在 python3 中实践改过的代码,希望对你有帮助。...
摘要:本篇内容为机器学习实战第章决策树部分程序清单。适用数据类型数值型和标称型在构造决策树时,我们需要解决的第一个问题就是,当前数据集上哪个特征在划分数据分类时起决定性作用。下面我们会介绍如何将上述实现的函数功能放在一起,构建决策树。 本篇内容为《机器学习实战》第 3 章决策树部分程序清单。所用代码为 python3。 决策树优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可...
阅读 2864·2023-04-26 02:49
阅读 3445·2021-11-25 09:43
阅读 3385·2021-10-09 09:43
阅读 2993·2021-09-28 09:44
阅读 2449·2021-09-22 15:29
阅读 4515·2021-09-14 18:02
阅读 2778·2021-09-03 10:48
阅读 3429·2019-08-30 12:47