摘要:下载的全称为,是专门针对深度神经网络中的基础操作而设计基于的加速库。为深度神经网络中的标准流程提供了高度优化的实现方式,例如以及的前向以及后向过程。只是深度神经网络软件开发包中的其中一种加速库。想了解深度神经网络加速库中的其他包请戳链接。
1.首先去官网下载cuda9.0版本 然后安装,配置环境变量。
CUDA_PATH是C:Program FilesNVIDIA GPU Computing ToolkitCUDA9.0但是仅仅如此,是不够的,还需要在环境变量里的path全局变量里加入,这个下面的bin和libx64目录的路径。
安装过程就是一路默认下一步就好了。
2.下载cudnn
cuDNN的全称为NVIDIA CUDA® Deep Neural Network library,是NVIDIA专门针对深度神经网络(Deep Neural Networks)中的基础操作而设计基于GPU的加速库。cuDNN为深度神经网络中的标准流程提供了高度优化的实现方式,例如convolution、pooling、normalization以及activation layers的前向以及后向过程。
cuDNN只是NVIDIA深度神经网络软件开发包中的其中一种加速库。想了解NVIDIA深度神经网络加速库中的其他包请戳链接https://developer.nvidia.com/...。
下面我们说一下正确的安装cuDNN方式,其实跟着官方安装说明进行安装就可以了。
从https://developer.nvidia.com/...(可能需要注册或登录)。
如果这个压缩包不是.tgz格式的,把这个压缩包重命名为.tgz格式。解压当前的.tgz格式的软件包到系统中的任意路径,解压后的文件夹名为cuda,文件夹中包含三个文件夹:一个为include,另一个为lib64,还有一个是bin,然后复制到CUDA_PATH下面。
将解压后的文件中的lib/x64文件夹关联到环境变量中。这一步很重要。
运行tensorflow检验
#coding=utf-8 import tensorflow as tf import numpy as np hello=tf.constant("hhh") sess=tf.Session() print (sess.run(hello))
3.安装tensorflow
按照官网教程安装,然后用按照anaconda启动tensorflow,
python
import tensorflow as tf
如果不报错就成功了。
查看tensorflow版本
4.如何查看自己用的是cpu还是gpu?
在Python环境中输入:
在Python环境中输入:
import numpy import tensorflow as tf a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name="a") b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name="b") c = tf.matmul(a, b) sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) print(sess.run(c))
之后就会出现详细的信息:
Device mapping: /job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: Tesla K40c, pci bus id: 0000:05:00.0 b: /job:localhost/replica:0/task:0/device:GPU:0 a: /job:localhost/replica:0/task:0/device:GPU:0 MatMul: /job:localhost/replica:0/task:0/device:GPU:0 [[ 22. 28.] [ 49. 64.]]
就能看到是GPU在工作还是CPU再工作了。
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/42380.html
摘要:本文作者详细描述了自己组装深度学习服务器的过程,从主板电源机箱等的选取到部件的安装,再到服务器的设置,可谓面面俱到。注本文旨在讨论服务器设置及多用户协作,部件组装和软件安装过程是关于创建自己的的文章的简化版本。本文作者详细描述了自己组装深度学习服务器的过程,从 CPU、GPU、主板、电源、机箱等的选取到部件的安装,再到服务器的设置,可谓面面俱到。作者指出,组装者首先要弄清自己的需求,然后根据...
摘要:大家都知道深度学习涉及到大量的模型算法,看着那些乱糟糟的公式符号,心中一定是。以最常用的环境为例。这里强烈推荐版本,因为深度学习动辄几小时几天几周的运行市场,加速会节省你很多时间甚至电费。常见错误找不到指定的模块。 区别于其他入门教程的手把手式,本文更强调因而非果。我之所以加上通用字样,是因为在你了解了这个开发环境之后,那些很low的错误你就不会犯了。 大家都知道深度学习涉及到大量的...
阅读 2776·2021-11-19 09:40
阅读 3680·2021-11-15 18:10
阅读 3253·2021-11-11 16:55
阅读 1204·2021-09-28 09:36
阅读 1622·2021-09-22 15:52
阅读 3344·2019-08-30 14:06
阅读 1136·2019-08-29 13:29
阅读 2287·2019-08-26 17:04