摘要:较高的值可以更好地消除噪声,但也会删除图像的细节与相同,但仅适用于彩色图像。如上所述,它用于从彩色图像中去除噪声。第三个是,它指定了用于去噪的附近帧的数量。在这种情况下,使用总共帧,其中中心帧是要去噪的帧。
Image Denoising
OpenCV提供了这种技术的四种变体。
cv2.fastNlMeansDenoising() - 使用单个灰度图像
cv2.fastNlMeansDenoisingColored() - 使用彩色图像。
cv2.fastNlMeansDenoisingMulti() - 用于在短时间内捕获的图像序列(灰度图像)
cv2.fastNlMeansDenoisingColoredMulti() - 与上面相同,但用于彩色图像。
Common arguments:
h:参数决定滤波器强度。较高的h值可以更好地消除噪声,但也会删除图像的细节 (10 is ok)
hForColorComponents:与h相同,但仅适用于彩色图像。 (通常与h相同)
templateWindowSize:应该是奇数。 (recommended 7)
searchWindowSize:应该是奇数。 (recommended 21)
cv2.fastNlMeansDenoisingColored()
如上所述,它用于从彩色图像中去除噪声。 (噪音预计是高斯噪音)
import numpy as np import cv2 import matplotlib.pyplot as plt img = cv2.imread("img.jpg") dst = cv2.fastNlMeansDenoisingColored(img,None,10,10,7,21) plt.subplot(121),plt.imshow(img) plt.subplot(122),plt.imshow(dst) plt.show()
cv2.fastNlMeansDenoisingMulti()
现在我们将相同的方法应用于视频。 第一个参数是嘈杂帧的列表。 第二个参数imgToDenoiseIndex指定我们需要去噪的帧,因为我们在输入列表中传递了frame的索引。 第三个是temporalWindowSize,它指定了用于去噪的附近帧的数量。 在这种情况下,使用总共temporalWindowSize帧,其中中心帧是要去噪的帧。 例如,传递了5个帧的列表作为输入。 设imgToDenoiseIndex = 2和temporalWindowSize = 3.然后使用frame-1,frame-2和frame-3对帧-2进行去噪
import numpy as np import cv2 import matplotlib.pyplot as plt cap = cv2.VideoCapture("test.mp4") # create a list of first 5 frames img = [cap.read()[1] for i in range(5)] # convert all to grayscale gray = [cv2.cvtColor(i, cv2.COLOR_BGR2GRAY) for i in img] # convert all to float64 gray = [np.float64(i) for i in gray] # create a noise of variance 25 noise = np.random.randn(*gray[1].shape)*10 # Add this noise to images noisy = [i+noise for i in gray] # Convert back to uint8 noisy = [np.uint8(np.clip(i,0,255)) for i in noisy] # Denoise 3rd frame considering all the 5 frames dst = cv2.fastNlMeansDenoisingMulti(noisy, 2, 5, None, 4, 7, 35) plt.subplot(131),plt.imshow(gray[2],"gray") plt.subplot(132),plt.imshow(noisy[2],"gray") plt.subplot(133),plt.imshow(dst,"gray") plt.show()
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/42317.html
摘要:学习笔记七数学形态学关注的是图像中的形状,它提供了一些方法用于检测形状和改变形状。学习笔记十一尺度不变特征变换,简称是图像局部特征提取的现代方法基于区域图像块的分析。本文的目的是简明扼要地说明的编码机制,并给出一些建议。 showImg(https://segmentfault.com/img/bVRJbz?w=900&h=385); 前言 开始之前,我们先来看这样一个提问: pyth...
摘要:前言废话滑块验证码破解是一直都想搞的项目,毕竟多数网站都会采用滑块验证码,于是最近在修改论文的闲暇之余把这事儿给解决了。 前言 废话滑块验证码破解是一直都想搞的项目,毕竟多数网站都会采用滑块验证码,于是最近在修改论文的闲暇之余把这事儿给解决了。要搞现在的滑块验证码绕不开图像处理,图像处理当然是首推OpenCV-Python啦!当然我的OpenCV非常菜(P.S.两天速成不敢保证代码质量...
小编写这篇文章的一个主要目的,主要是给大家就相关的具体内容做出一些详细解答,比如了解使用python的相关知识,主要是涉及到python Opencv的一些相关知识,比如使用python Opencv实现停车位识别,就具体的内容,下面给大家详细解答下。 1.怎么去实现 (1)第一是需要用到一个处理画框的程序,将图片中的有车和无车的停车位给画出来,并且保存坐标(如果画错了,将鼠标移至要删除的...
阅读 1883·2023-04-25 16:19
阅读 3027·2021-11-24 09:39
阅读 771·2021-11-16 11:44
阅读 1630·2019-08-29 12:52
阅读 1104·2019-08-26 13:33
阅读 1032·2019-08-26 10:26
阅读 2173·2019-08-23 16:42
阅读 2537·2019-08-23 14:37