摘要:绘制所有轮廓,传递要绘制图像中的所有轮廓,,,,要绘制单个轮廓,比如第个轮廓,,,,但大多数情况下,绘制第个轮廓,以下方法将非常有用,,,,代码
Contours : Getting Started
轮廓简单地解释为连接所有连续点(沿着边界)的曲线,具有相同的颜色或强度.
轮廓是形状分析和物体检测和识别的有用工具
NOTE
为获得更好的准确性,请使用二值图,在找到轮廓之前,应用阈值法或canny边缘检测
从OpenCV 3.2开始,findContours()不再修改源图像,而是将修改后的图像作为三个返回参数中的第一个返回
在OpenCV中,查找轮廓是从黑色背景中查找白色对象
findContours(image, mode, method[, contours[, hierarchy[, offset]]])
image:原图像
mode:轮廓检索模式
method:轮廓近似方法
输出为: 修改后的图像,轮廓,层次结构
轮廓是所有轮廓的列表.每个多带带的轮廓是对象边界点的坐标.
轮廓检索模式 | 含义 |
cv2.RETR_EXTERNAL | 只检测外轮廓 |
cv2.RETR_LIST | 提取所有轮廓并将其放入列表,不建立等级关系 |
cv2.RETR_CCOMP | 建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息。如果内孔内还有一个连通物体,这个物体的边界也在顶层 |
cv2.RETR_TREE | 建立一个等级树结构的轮廓 |
轮廓逼近方法 | 含义 |
cv2.CHAIN_APPROX_NONE | 存储所有的轮廓点,相邻的两个点的像素位置差不超过1,即max(abs(x1-x2),abs(y2-y1))==1 |
cv2.CHAIN_APPROX_SIMPLE | 压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息 |
cv2.CHAIN_APPROX_TC89_L1 或 cv2.CHAIN_APPROX_TC89_KCOS | 应用Teh-Chin链近似算法 |
代码:
import cv2 import numpy as np img = cv2.imread("img.jpg") imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 127, 255, 0) im2, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)绘制轮廓
cv2.drawContours(image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset]]]]])
image:原图像
contours:作为Python列表传递的轮廓
contourIdx:轮廓索引(在绘制单个轮廓时很有用。绘制所有轮廓,传递-1)
•要绘制图像中的所有轮廓:
cv.drawContours(img,contours,-1,(0,255,0),3)
•要绘制单个轮廓,比如第4个轮廓:
cv.drawContours(img,contours,3,(0,255,0),3)
•但大多数情况下,绘制第4个轮廓,以下方法将非常有用:
cnt = contours[4]
cv.drawContours(img,[cnt],0,(0,255,0),3)
代码:
import cv2 import numpy as np img = cv2.imread("img7.png") imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 127, 255, 0) im2, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cnt = contours[0] cv2.drawContours(img,[cnt],0,(0,255,0),3) cv2.imshow("src",img) cv2.waitKey()
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/42004.html
摘要:使用,进行基本的图像处理提取红色圆圈轮廓并绘制效果图源码写这篇博客源于博友的提问,想提取图片中的红色圆圈坐标,并绘制封闭的轮廓。还是使用一系列图像处理,得到了比较理想的结果。 ...
阅读 566·2021-11-18 10:02
阅读 1047·2021-11-02 14:41
阅读 673·2021-09-03 10:29
阅读 1892·2021-08-23 09:42
阅读 2727·2021-08-12 13:31
阅读 1198·2019-08-30 15:54
阅读 1951·2019-08-30 13:09
阅读 1427·2019-08-30 10:55