资讯专栏INFORMATION COLUMN

Python爬虫之多线程下载豆瓣Top250电影图片

shiyang6017 / 2011人阅读

摘要:本次爬虫项目将会用到模块中的类,多线程豆瓣电影图片。总结通过上述两个爬虫程序的对比,我们不难发现,同样是下载豆瓣电影,个网页中的图片,在没有使用多线程的情况下,总共耗时约,而在使用多线程个线程的情况下,总共耗时约秒,效率整整提高了约倍。

爬虫项目介绍

  本次爬虫项目将爬取豆瓣Top250电影的图片,其网址为:https://movie.douban.com/top250, 具体页面如下图所示:

  本次爬虫项目将分别不使用多线程和使用多线程来完成,通过两者的对比,显示出多线程在爬虫项目中的巨大优势。本文所使用的多线程用到了concurrent.futures模块,该模块是Python中最广为使用的并发库,它可以非常方便地将任务并行化。在concurrent.futures模块中,共有两种并发模块,分别如下:

多线程模式:ThreadPoolExecutor,适合 IO密集型任务;

多进程模式:ProcessPoolExecutor,适合计算密集型任务。

具体的关于该模块的介绍可以参考其官方网址:https://docs.python.org/3/lib... 。
  本次爬虫项目将会用到concurrent.futures模块中的ThreadPoolExecutor类,多线程豆瓣Top250电影图片。下面将会给出本次爬虫项目分别不使用多线程和使用多线程的对比,以此来展示多线程在爬虫中的巨大优势。

不使用多线程

  首先,我们不使用多线程来下载豆瓣Top250电影图片,其完整的Python代码如下:

import time
import requests
import urllib.request
from bs4 import BeautifulSoup

# 该函数用于下载图片
# 传入函数: 网页的网址url
def download_picture(url):

    # 获取网页的源代码
    r = requests.get(url)
    # 利用BeautifulSoup将获取到的文本解析成HTML
    soup = BeautifulSoup(r.text, "lxml")
    # 获取网页中的电影图片
    content = soup.find("div", class_="article")
    images = content.find_all("img")
    # 获取电影图片的名称和下载地址
    picture_name_list = [image["alt"] for image in images]
    picture_link_list = [image["src"] for image in images]

    # 利用urllib.request..urlretrieve正式下载图片
    for picture_name, picture_link in zip(picture_name_list, picture_link_list):
        urllib.request.urlretrieve(picture_link, "E://douban/%s.jpg" % picture_name)


def main():

    # 全部10个网页
    start_urls = ["https://movie.douban.com/top250"]
    for i in range(1, 10):
        start_urls.append("https://movie.douban.com/top250?start=%d&filter=" % (25 * i))

    # 统计该爬虫的消耗时间
    t1 = time.time()
    print("*" * 50)

    for url in start_urls:
        download_picture(url)
    t2 = time.time()

    print("不使用多线程,总共耗时:%s"%(t2-t1))
    print("*" * 50)

main()

其输出结果如下:

**************************************************
不使用多线程,总共耗时:79.93260931968689
**************************************************

去E盘中的douban文件夹查看,如下图:

  我们可以看到,在不使用多线程的情况下,这个爬虫总共耗时约80s,完成了豆瓣Top250电影图片的下载。

使用多线程

  接下来,我们使用多线程来下载豆瓣Top250电影图片,其完整的Python代码如下:

import time
import requests
import urllib.request
from bs4 import BeautifulSoup
from concurrent.futures import ThreadPoolExecutor, wait, ALL_COMPLETED

# 该函数用于下载图片
# 传入函数: 网页的网址url
def download_picture(url):

    # 获取网页的源代码
    r = requests.get(url)
    # 利用BeautifulSoup将获取到的文本解析成HTML
    soup = BeautifulSoup(r.text, "lxml")
    # 获取网页中的电影图片
    content = soup.find("div", class_="article")
    images = content.find_all("img")
    # 获取电影图片的名称和下载地址
    picture_name_list = [image["alt"] for image in images]
    picture_link_list = [image["src"] for image in images]

    # 利用urllib.request..urlretrieve正式下载图片
    for picture_name, picture_link in zip(picture_name_list, picture_link_list):
        urllib.request.urlretrieve(picture_link, "E://douban/%s.jpg" % picture_name)


def main():

    # 全部10个网页
    start_urls = ["https://movie.douban.com/top250"]
    for i in range(1, 10):
        start_urls.append("https://movie.douban.com/top250?start=%d&filter=" % (25 * i))

    # 统计该爬虫的消耗时间
    print("*" * 50)
    t3 = time.time()

    # 利用并发下载电影图片
    executor = ThreadPoolExecutor(max_workers=10)  # 可以自己调整max_workers,即线程的个数
    # submit()的参数: 第一个为函数, 之后为该函数的传入参数,允许有多个
    future_tasks = [executor.submit(download_picture, url) for url in start_urls]
    # 等待所有的线程完成,才进入后续的执行
    wait(future_tasks, return_when=ALL_COMPLETED)

    t4 = time.time()
    print("使用多线程,总共耗时:%s" % (t4 - t3))
    print("*" * 50)

main()

其输出结果如下:

**************************************************
使用多线程,总共耗时:9.361606121063232
**************************************************

再去E盘中的douban文件夹查看,发现同样也下载了250张电影图片。

总结

  通过上述两个爬虫程序的对比,我们不难发现,同样是下载豆瓣Top250电影,10个网页中的图片,在没有使用多线程的情况下,总共耗时约80s,而在使用多线程(10个线程)的情况下,总共耗时约9.5秒,效率整整提高了约8倍。这样的效率提升在爬虫中无疑是令人兴奋的。
  希望读者在看了本篇博客后,也能尝试着在自己的爬虫中使用多线程,说不定会有意外的惊喜哦~~因为,大名鼎鼎的Python爬虫框架Scrapy,也是使用多线程来提升爬虫速度的哦!

注意:本人现已开通两个微信公众号: 因为Python(微信号为:python_math)以及轻松学会Python爬虫(微信号为:easy_web_scrape), 欢迎大家关注哦~~

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/41878.html

相关文章

  • Java爬虫之多线程下载IMDB中Top250电影图片

    摘要:本次分享将在此基础上,利用多线程,提高程序运行的效率。思路本次分享建立在博客爬虫之下载中电影的图片上,总体的爬虫思路没有变化,只是在此基础上引入多线程。 介绍   在博客:Java爬虫之下载IMDB中Top250电影的图片中我们实现了利用Java爬虫来下载图片,但是效率不算太高。本次分享将在此基础上,利用多线程,提高程序运行的效率。 思路   本次分享建立在博客Java爬虫之下载IMD...

    wujl596 评论0 收藏0
  • Java爬虫下载IMDB中Top250电影图片

    摘要:介绍在博客爬虫爬取豆瓣电影图片中我们利用的爬虫框架,将豆瓣电影图片下载到自己电脑上。那么,在的爬虫的也可以下载图片吗答案当然是肯定的在本次分享中,我们将利用的包和函数来实现图片的下载。 介绍   在博客:Scrapy爬虫(4)爬取豆瓣电影Top250图片中我们利用Python的爬虫框架Scrapy,将豆瓣电影Top250图片下载到自己电脑上。那么,在Java的爬虫的也可以下载图片吗?答...

    tianren124 评论0 收藏0
  • Python爬虫 - scrapy - 爬取豆瓣电影TOP250

    摘要:前言新接触爬虫,经过一段时间的实践,写了几个简单爬虫,爬取豆瓣电影的爬虫例子网上有很多,但都很简单,大部分只介绍了请求页面和解析部分,对于新手而言,我希望能够有一个比较全面的实例。 0.前言 新接触爬虫,经过一段时间的实践,写了几个简单爬虫,爬取豆瓣电影的爬虫例子网上有很多,但都很简单,大部分只介绍了请求页面和解析部分,对于新手而言,我希望能够有一个比较全面的实例。所以找了很多实例和文...

    WalkerXu 评论0 收藏0
  • scrapy入门教程——爬取豆瓣电影Top250

    摘要:注意爬豆爬一定要加入选项,因为只要解析到网站的有,就会自动进行过滤处理,把处理结果分配到相应的类别,但偏偏豆瓣里面的为空不需要分配,所以一定要关掉这个选项。 本课只针对python3环境下的Scrapy版本(即scrapy1.3+) 选取什么网站来爬取呢? 对于歪果人,上手练scrapy爬虫的网站一般是官方练手网站 http://quotes.toscrape.com 我们中国人,当然...

    senntyou 评论0 收藏0

发表评论

0条评论

shiyang6017

|高级讲师

TA的文章

阅读更多
最新活动
阅读需要支付1元查看
<