资讯专栏INFORMATION COLUMN

在Python中使用OpenCV进行人脸检测

stefanieliang / 1527人阅读

摘要:总结在本文中,我们学习了如何使用中的,即通过代码写了一个人脸检测的程序。

OpenCV是如今最流行的计算机视觉库,而我们今天就是要学习如何安装使用OpenCV,以及如何去访问我们的摄像头。然后我们一起来看看写一个人脸检测程序是如何地简单,简单到只需要几行代码。

在开始之前,我假设你已经对Python有一定的了解。当然,如果你觉得你还不够格,这里有推荐一些学习Python的电子书,你可以先学习下Python,如此可以让你更好地理解接下来的步骤。另外,这里还推荐一本电子书来学习OpenCV。

好,不浪费时间,开始吧。

To setup opencv in python environment you will need these things ready ( match the versions to follow along with this tutorial),
首先我们需要先准备好这些环境(版本记得配好):

Python 2.x

OpenCV 2.x

Numpy库 (这个可以在稍后用pip下载)

首先,对于下载Python,我们可以先到官网上下对应的版本,如果是Windows就可能是msi格式的版本,如果是Mac就可能是pkg格式的安装包,如果是Linux则可能是源码包。

安装和Python后打开命令行就可以使用pip命令进行Python包的安装了,如:

由于OpenCV使用Numpy库,因此先通过命令pip install numpy安装Numpy库。安装完后,尝试导入,没有报错则ok:

然后进入OpenCV官网下对应的版本并安装,尝试导入:

尝试人脸检测

万事俱备,只欠东风。我们来写代码检测人脸吧,来一发OpenCV的Hello world。

在这里我们准备使用pre-trained的XML文件,这些XML文件都较难训练,但是我们不需要担心,因此OpenCV已经为我们提供了很多人脸检测相关的pre-trained分类器。

想要使用这写分类器,我们需要将分类器的XML文件haarcascade_frontalface_default.xmlopencv文件夹/sources/data/haarcascades/下复制到我们的项目目录下,就是我们将要写程序的目录下。如果没有opencv文件夹/sources/data/haarcascades/这个目录,可以尝试找一下opencv文件夹/share/OpenCV/haarcascades/。只要找到如下文件即可:

然后如果我们要加载这个分类器的话,如此就好:

detector = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")

然后接下来我们先来测试一下摄像头吧,

cap = cv2.VideoCapture(0)
ret, img = cap.read()
cv2.imshow("windowname", img)
cv2.waitKey(0)

# 释放摄像头资源
cap.release()

以上的代码是调用你电脑的0号摄像头,并展示出来。当然,如果你有多个摄像头,那么你也可以试试别的id,修改VideoCapture函数的参数即可。

其中cap.read()就是从摄像头获取到图像,这个函数返回了两个变量,第一个为布尔值表示成功与否,以及第二个是图像。

然后程序通过imshow()展示图片,其第一个传入的参数为窗口的名称,而第二个就是要展示的图片,以上代码传入的就是我们的自拍。

而waitKey是用来停在图片的展示界面,让你看清楚,参数可以是10、100、1000等,单位是毫秒,这里填0就是一直停着。注意了,如果停留的时间不够久,就可能看不见imshow的照片了。

运行了这段代码,你将会看到摄像头所拍摄的画面,一般来说就是你自己了。

接下来我们将图片先转换为灰度图片,

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

然后就开始了人脸检测之旅:

faces = detector.detectMultiScale(gray, 1.3, 5)

以上的这句代码会等到一串list,list中的每个都有x, y, height, width四个变量。其中list表示检测到的人脸,即list的size就是人脸的个数,而每个人脸在图片中的位置是(x, y, height, width)。

为了能让我们更直观地看出来检测结果,我们将这些人脸框出来:

for (x, y, w, h) in faces:
    cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)

更进一步

现在我们已经通过摄像头检测到人脸了,但是我们真正需要的是不是一张静态的图片,我们需要的是一个能检测的实时动态视频流。因此我们加一个循环,然后不断的检测,最终在显示在新窗口中。

detector = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
cap = cv2.VideoCapture(0)

while True:
    ret, img = cap.read()
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    faces = detector.detectMultiScale(gray, 1.3, 5)
    for (x, y, w, h) in faces:
        cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)

    cv2.imshow("frame", img)
    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

cap.release()
cv2.destroyAllWindows()

需要注意的是,结尾用了waitKey和ord实现了按q退出的功能,就是每一毫秒都在检测键盘有没有按下了q,要是按下了就退出循环了。接下来就释放资源。

总结

在本文中,我们学习了如何使用Python中的OpenCV,即通过代码写了一个人脸检测的程序。我们温习或学习了这些知识点:

使用OpenCV的分类器

从摄像头中读取照片

在图片上换框框

在新窗口上展示图片

实时地进行人脸检测

P.S. 你们发现了XML那里有一个叫猫脸识别的文件吗!!!

先这样吧

原文,若有错误之处请指出,更多地关注煎鱼。

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/41761.html

相关文章

  • 利用python进行识别相似图片(二)

    摘要:上一篇文章的地址利用进行识别相似图片一安装官网在进行下一步操作时,我们需要安装,本来安装的步骤跟平常安装其他模块一样,而然由于的历史原因用过都懂,弄得一点都不友好。 前言 和网上各种首先你要有一个女朋友的系列一样,想进行人脸判断,首先要有脸,只要能靠确定人脸的位置,那么进行两张人脸是否相似的操作便迎刃而解了。 所以本篇文章着重讲述如何利用openCV定位人脸。 上一篇文章的地址: 利用...

    余学文 评论0 收藏0
  • 机器视觉、模式识别库汇总

    摘要:十开放模式识别项目开放模式识别项目,致力于开发出一套包含图像处理计算机视觉自然语言处理模式识别机器学习和相关领域算法的函数库。 一、开源生物特征识别库 OpenBROpenBR 是一个用来从照片中识别人脸的工具。还支持推算性别与年龄。使用方法:$ br -algorithm FaceRecognition -compare me.jpg you.jpg二、计算机视觉库 OpenCVOpenC...

    habren 评论0 收藏0
  • opencv+mtcnn+facenet+python+tensorflow 实现实时人脸识别(20

    摘要:实现实时人脸识别更新新增测试方法直接使用特征进行计算对比此次更新主要想法上一个版本是使用对准备好的若干张照片进行训练,首先准确率不是很高还没细究问题,猜测原因是自己准备的图片问题,以及实时采集实时的环境影响,但最主要的原因还是对每个目标对象 opencv+mtcnn+facenet+python+tensorflow 实现实时人脸识别(2018.9.26更新) 新增测试方法直接使用em...

    jindong 评论0 收藏0
  • cnn卷积神经网络打造人脸登录系统

    摘要:本文基于环境,采用为基础来构建实时人脸检测与识别系统,探索人脸识别系统在现实应用中的难点。对于人脸检测方法,效果好于的方法,但是检测力度也难以达到现场应用标准。本文中,我们采用了基于深度学习方法的人脸检测系统。 git地址:https://github.com/chenlinzho... 本文主要介绍了系统涉及的人脸检测与识别的详细方法,该系统基于python2.7.10/opencv...

    jackwang 评论0 收藏0

发表评论

0条评论

stefanieliang

|高级讲师

TA的文章

阅读更多
最新活动
阅读需要支付1元查看
<