摘要:和分别是样本输入和输出二进制值第位,对于每个样本有两个值,分别是和对应第位。最简单实现,没有考虑偏置变量,只有两个神经元。存储神经元状态,包括,是内部状态矩阵记忆,是隐藏层神经元输出矩阵。表示当前时序表示时序记忆单元。下载甄环传小说原文。
真正掌握一种算法,最实际的方法,完全手写出来。
LSTM(Long Short Tem Memory)特殊递归神经网络,神经元保存历史记忆,解决自然语言处理统计方法只能考虑最近n个词语而忽略更久前词语的问题。用途:word representation(embedding)(词语向量)、sequence to sequence learning(输入句子预测句子)、机器翻译、语音识别等。
100多行原始python代码实现基于LSTM二进制加法器。https://iamtrask.github.io/20... ,翻译http://blog.csdn.net/zzukun/a... :
import copy, numpy as np
np.random.seed(0)
最开始引入numpy库,矩阵操作。
def sigmoid(x):
output = 1/(1+np.exp(-x)) return output
声明sigmoid激活函数,神经网络基础内容,常用激活函数sigmoid、tan、relu等,sigmoid取值范围[0, 1],tan取值范围[-1,1],x是向量,返回output是向量。
def sigmoid_output_to_derivative(output):
return output*(1-output)
声明sigmoid求导函数。
加法器思路:二进制加法是二进制位相加,记录满二进一进位,训练时随机c=a+b样本,输入a、b输出c是整个lstm预测过程,训练由a、b二进制向c各种转换矩阵和权重,神经网络。
int2binary = {}
声明词典,由整型数字转成二进制,存起来不用随时计算,提前存好读取更快。
binary_dim = 8
largest_number = pow(2,binary_dim)
声明二进制数字维度,8,二进制能表达最大整数2^8=256,largest_number。
binary = np.unpackbits(
np.array([range(largest_number)],dtype=np.uint8).T,axis=1)
for i in range(largest_number):
int2binary[i] = binary[i]
预先把整数到二进制转换词典存起来。
alpha = 0.1
input_dim = 2
hidden_dim = 16
output_dim = 1
设置参数,alpha是学习速度,input_dim是输入层向量维度,输入a、b两个数,是2,hidden_dim是隐藏层向量维度,隐藏层神经元个数,output_dim是输出层向量维度,输出一个c,是1维。从输入层到隐藏层权重矩阵是216维,从隐藏层到输出层权重矩阵是161维,隐藏层到隐藏层权重矩阵是16*16维:
synapse_0 = 2*np.random.random((input_dim,hidden_dim)) - 1
synapse_1 = 2*np.random.random((hidden_dim,output_dim)) - 1
synapse_h = 2*np.random.random((hidden_dim,hidden_dim)) - 1
2x-1,np.random.random生成从0到1之间随机浮点数,2x-1使其取值范围在[-1, 1]。
synapse_0_update = np.zeros_like(synapse_0)
synapse_1_update = np.zeros_like(synapse_1)
synapse_h_update = np.zeros_like(synapse_h)
声明三个矩阵更新,Delta。
for j in range(10000):
进行10000次迭代。
a_int = np.random.randint(largest_number/2)
a = int2binary[a_int]
b_int = np.random.randint(largest_number/2)
b = int2binary[b_int]
c_int = a_int + b_int
c = int2binary[c_int]
随机生成样本,包含二进制a、b、c,c=a+b,a_int、b_int、c_int分别是a、b、c对应整数格式。
d = np.zeros_like(c)
d存模型对c预测值。
overallError = 0
全局误差,观察模型效果。
layer_2_deltas = list()
存储第二层(输出层)残差,输出层残差计算公式推导公式http://deeplearning.stanford.... 。
layer_1_values = list()
layer_1_values.append(np.zeros(hidden_dim))
存储第一层(隐藏层)输出值,赋0值作为上一个时间值。
for position in range(binary_dim):
遍历二进制每一位。
X = np.array([[a[binary_dim - position - 1],b[binary_dim - position - 1]]])
y = np.array([[c[binary_dim - position - 1]]]).T
X和y分别是样本输入和输出二进制值第position位,X对于每个样本有两个值,分别是a和b对应第position位。把样本拆成每个二进制位用于训练,二进制加法存在进位标记正好适合利用LSTM长短期记忆训练,每个样本8个二进制位是一个时间序列。
layer_1 = sigmoid(np.dot(X,synapse_0) + np.dot(layer_1_values[-1],synapse_h))
公式Ct = sigma(W0·Xt + Wh·Ct-1)
layer_2 = sigmoid(np.dot(layer_1,synapse_1))
这里使用的公式是C2 = sigma(W1·C1),
layer_2_error = y - layer_2
计算预测值和真实值误差。
layer_2_deltas.append((layer_2_error)*sigmoid_output_to_derivative(layer_2))
反向传导,计算delta,添加到数组layer_2_deltas
overallError += np.abs(layer_2_error[0])
计算累加总误差,用于展示和观察。
d[binary_dim - position - 1] = np.round(layer_20)
存储预测position位输出值。
layer_1_values.append(copy.deepcopy(layer_1))
存储中间过程生成隐藏层值。
future_layer_1_delta = np.zeros(hidden_dim)
存储下一个时间周期隐藏层历史记忆值,先赋一个空值。
for position in range(binary_dim):
遍历二进制每一位。
X = np.array([[a[position],b[position]]])
取出X值,从大位开始更新,反向传导按时序逆着一级一级更新。
layer_1 = layer_1_values[-position-1]
取出位对应隐藏层输出。
prev_layer_1 = layer_1_values[-position-2]
取出位对应隐藏层上一时序输出。
layer_2_delta = layer_2_deltas[-position-1]
取出位对应输出层delta。
layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + layer_2_delta.dot(synapse_1.T)) * sigmoid_output_to_derivative(layer_1)
神经网络反向传导公式,加上隐藏层?值。
synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta)
累加权重矩阵更新,对权重(权重矩阵)偏导等于本层输出与下一层delta点乘。
synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta)
前一时序隐藏层权重矩阵更新,前一时序隐藏层输出与本时序delta点乘。
synapse_0_update += X.T.dot(layer_1_delta)
输入层权重矩阵更新。
future_layer_1_delta = layer_1_delta
记录本时序隐藏层delta。
synapse_0 += synapse_0_update * alpha
synapse_1 += synapse_1_update * alpha
synapse_h += synapse_h_update * alpha
权重矩阵更新。
synapse_0_update *= 0
synapse_1_update *= 0
synapse_h_update *= 0
更新变量归零。
if(j % 1000 == 0):
print "Error:" + str(overallError) print "Pred:" + str(d) print "True:" + str(c) out = 0 for index,x in enumerate(reversed(d)): out += x*pow(2,index) print str(a_int) + " + " + str(b_int) + " = " + str(out) print "------------"
每训练1000个样本输出总误差信息,运行时看收敛过程。
LSTM最简单实现,没有考虑偏置变量,只有两个神经元。
完整LSTM python实现。完全参照论文great intro paper实现,代码来源https://github.com/nicodjimen... ,作者解释http://nicodjimenez.github.io... ,具体过程参考http://colah.github.io/posts/... 图。
import random
import numpy as np
import math
def sigmoid(x):
return 1. / (1 + np.exp(-x))
声明sigmoid函数。
def rand_arr(a, b, *args):
np.random.seed(0) return np.random.rand(*args) * (b - a) + a
生成随机矩阵,取值范围[a,b),shape用args指定。
class LstmParam:
def __init__(self, mem_cell_ct, x_dim): self.mem_cell_ct = mem_cell_ct self.x_dim = x_dim concat_len = x_dim + mem_cell_ct # weight matrices self.wg = rand_arr(-0.1, 0.1, mem_cell_ct, concat_len) self.wi = rand_arr(-0.1, 0.1, mem_cell_ct, concat_len) self.wf = rand_arr(-0.1, 0.1, mem_cell_ct, concat_len) self.wo = rand_arr(-0.1, 0.1, mem_cell_ct, concat_len) # bias terms self.bg = rand_arr(-0.1, 0.1, mem_cell_ct) self.bi = rand_arr(-0.1, 0.1, mem_cell_ct) self.bf = rand_arr(-0.1, 0.1, mem_cell_ct) self.bo = rand_arr(-0.1, 0.1, mem_cell_ct) # diffs (derivative of loss function w.r.t. all parameters) self.wg_diff = np.zeros((mem_cell_ct, concat_len)) self.wi_diff = np.zeros((mem_cell_ct, concat_len)) self.wf_diff = np.zeros((mem_cell_ct, concat_len)) self.wo_diff = np.zeros((mem_cell_ct, concat_len)) self.bg_diff = np.zeros(mem_cell_ct) self.bi_diff = np.zeros(mem_cell_ct) self.bf_diff = np.zeros(mem_cell_ct) self.bo_diff = np.zeros(mem_cell_ct)
LstmParam类传递参数,mem_cell_ct是lstm神经元数目,x_dim是输入数据维度,concat_len是mem_cell_ct与x_dim长度和,wg是输入节点权重矩阵,wi是输入门权重矩阵,wf是忘记门权重矩阵,wo是输出门权重矩阵,bg、bi、bf、bo分别是输入节点、输入门、忘记门、输出门偏置,wg_diff、wi_diff、wf_diff、wo_diff分别是输入节点、输入门、忘记门、输出门权重损失,bg_diff、bi_diff、bf_diff、bo_diff分别是输入节点、输入门、忘记门、输出门偏置损失,初始化按照矩阵维度初始化,损失矩阵归零。
def apply_diff(self, lr = 1): self.wg -= lr * self.wg_diff self.wi -= lr * self.wi_diff self.wf -= lr * self.wf_diff self.wo -= lr * self.wo_diff self.bg -= lr * self.bg_diff self.bi -= lr * self.bi_diff self.bf -= lr * self.bf_diff self.bo -= lr * self.bo_diff # reset diffs to zero self.wg_diff = np.zeros_like(self.wg) self.wi_diff = np.zeros_like(self.wi) self.wf_diff = np.zeros_like(self.wf) self.wo_diff = np.zeros_like(self.wo) self.bg_diff = np.zeros_like(self.bg) self.bi_diff = np.zeros_like(self.bi) self.bf_diff = np.zeros_like(self.bf) self.bo_diff = np.zeros_like(self.bo)
定义权重更新过程,先减损失,再把损失矩阵归零。
class LstmState:
def __init__(self, mem_cell_ct, x_dim): self.g = np.zeros(mem_cell_ct) self.i = np.zeros(mem_cell_ct) self.f = np.zeros(mem_cell_ct) self.o = np.zeros(mem_cell_ct) self.s = np.zeros(mem_cell_ct) self.h = np.zeros(mem_cell_ct) self.bottom_diff_h = np.zeros_like(self.h) self.bottom_diff_s = np.zeros_like(self.s) self.bottom_diff_x = np.zeros(x_dim)
LstmState存储LSTM神经元状态,包括g、i、f、o、s、h,s是内部状态矩阵(记忆),h是隐藏层神经元输出矩阵。
class LstmNode:
def __init__(self, lstm_param, lstm_state): # store reference to parameters and to activations self.state = lstm_state self.param = lstm_param # non-recurrent input to node self.x = None # non-recurrent input concatenated with recurrent input self.xc = None
LstmNode对应样本输入,x是输入样本x,xc是用hstack把x和递归输入节点拼接矩阵(hstack是横拼矩阵,vstack是纵拼矩阵)。
def bottom_data_is(self, x, s_prev = None, h_prev = None): # if this is the first lstm node in the network if s_prev == None: s_prev = np.zeros_like(self.state.s) if h_prev == None: h_prev = np.zeros_like(self.state.h) # save data for use in backprop self.s_prev = s_prev self.h_prev = h_prev # concatenate x(t) and h(t-1) xc = np.hstack((x, h_prev)) self.state.g = np.tanh(np.dot(self.param.wg, xc) + self.param.bg) self.state.i = sigmoid(np.dot(self.param.wi, xc) + self.param.bi) self.state.f = sigmoid(np.dot(self.param.wf, xc) + self.param.bf) self.state.o = sigmoid(np.dot(self.param.wo, xc) + self.param.bo) self.state.s = self.state.g * self.state.i + s_prev * self.state.f self.state.h = self.state.s * self.state.o self.x = x self.xc = xc
bottom和top是两个方向,输入样本从底部输入,反向传导从顶部向底部传导,bottom_data_is是输入样本过程,把x和先前输入拼接成矩阵,用公式wx+b分别计算g、i、f、o值,激活函数tanh和sigmoid。
每个时序神经网络有四个神经网络层(激活函数),最左边忘记门,直接生效到记忆C,第二个输入门,依赖输入样本数据,按照一定“比例”影响记忆C,“比例”通过第三个层(tanh)实现,取值范围是[-1,1]可以正向影响也可以负向影响,最后一个输出门,每一时序产生输出既依赖输入样本x和上一时序输出,还依赖记忆C,设计模仿生物神经元记忆功能。
def top_diff_is(self, top_diff_h, top_diff_s): # notice that top_diff_s is carried along the constant error carousel ds = self.state.o * top_diff_h + top_diff_s do = self.state.s * top_diff_h di = self.state.g * ds dg = self.state.i * ds df = self.s_prev * ds # diffs w.r.t. vector inside sigma / tanh function di_input = (1. - self.state.i) * self.state.i * di df_input = (1. - self.state.f) * self.state.f * df do_input = (1. - self.state.o) * self.state.o * do dg_input = (1. - self.state.g ** 2) * dg # diffs w.r.t. inputs self.param.wi_diff += np.outer(di_input, self.xc) self.param.wf_diff += np.outer(df_input, self.xc) self.param.wo_diff += np.outer(do_input, self.xc) self.param.wg_diff += np.outer(dg_input, self.xc) self.param.bi_diff += di_input self.param.bf_diff += df_input self.param.bo_diff += do_input self.param.bg_diff += dg_input # compute bottom diff dxc = np.zeros_like(self.xc) dxc += np.dot(self.param.wi.T, di_input) dxc += np.dot(self.param.wf.T, df_input) dxc += np.dot(self.param.wo.T, do_input) dxc += np.dot(self.param.wg.T, dg_input) # save bottom diffs self.state.bottom_diff_s = ds * self.state.f self.state.bottom_diff_x = dxc[:self.param.x_dim] self.state.bottom_diff_h = dxc[self.param.x_dim:]
反向传导,整个训练过程核心。假设在t时刻lstm输出预测值h(t),实际输出值是y(t),之间差别是损失,假设损失函数为l(t) = f(h(t), y(t)) = ||h(t) - y(t)||^2,欧式距离,整体损失函数是L(t) = ∑l(t),t从1到T,T表示整个事件序列最大长度。最终目标是用梯度下降法让L(t)最小化,找到一个最优权重w使得L(t)最小,当w发生微小变化L(t)不再变化,达到局部最优,即L对w偏导梯度为0。
dL/dw表示当w发生单位变化L变化多少,dh(t)/dw表示当w发生单位变化h(t)变化多少,dL/dh(t)表示当h(t)发生单位变化时L变化多少,(dL/dh(t)) * (dh(t)/dw)表示第t时序第i个记忆单元w发生单位变化L变化多少,把所有由1到M的i和所有由1到T的t累加是整体dL/dw。
第i个记忆单元,h(t)发生单位变化,整个从1到T时序所有局部损失l的累加和,是dL/dh(t),h(t)只影响从t到T时序局部损失l。
假设L(t)表示从t到T损失和,L(t) = ∑l(s)。
h(t)对w导数。
L(t) = l(t) + L(t+1),dL(t)/dh(t) = dl(t)/dh(t) + dL(t+1)/dh(t),用下一时序导数得出当前时序导数,规律推导,计算T时刻导数往前推,在T时刻,dL(T)/dh(T) = dl(T)/dh(T)。
class LstmNetwork():
def __init__(self, lstm_param): self.lstm_param = lstm_param self.lstm_node_list = [] # input sequence self.x_list = [] def y_list_is(self, y_list, loss_layer): """ Updates diffs by setting target sequence with corresponding loss layer. Will *NOT* update parameters. To update parameters, call self.lstm_param.apply_diff() """ assert len(y_list) == len(self.x_list) idx = len(self.x_list) - 1 # first node only gets diffs from label ... loss = loss_layer.loss(self.lstm_node_list[idx].state.h, y_list[idx]) diff_h = loss_layer.bottom_diff(self.lstm_node_list[idx].state.h, y_list[idx]) # here s is not affecting loss due to h(t+1), hence we set equal to zero diff_s = np.zeros(self.lstm_param.mem_cell_ct) self.lstm_node_list[idx].top_diff_is(diff_h, diff_s) idx -= 1 ### ... following nodes also get diffs from next nodes, hence we add diffs to diff_h ### we also propagate error along constant error carousel using diff_s while idx >= 0: loss += loss_layer.loss(self.lstm_node_list[idx].state.h, y_list[idx]) diff_h = loss_layer.bottom_diff(self.lstm_node_list[idx].state.h, y_list[idx]) diff_h += self.lstm_node_list[idx + 1].state.bottom_diff_h diff_s = self.lstm_node_list[idx + 1].state.bottom_diff_s self.lstm_node_list[idx].top_diff_is(diff_h, diff_s) idx -= 1 return loss
diff_h(预测结果误差发生单位变化损失L多少,dL(t)/dh(t)数值计算),由idx从T往前遍历到1,计算loss_layer.bottom_diff和下一个时序bottom_diff_h和作为diff_h(第一次遍历即T不加bottom_diff_h)。
loss_layer.bottom_diff:
def bottom_diff(self, pred, label): diff = np.zeros_like(pred) diff[0] = 2 * (pred[0] - label) return diff
l(t) = f(h(t), y(t)) = ||h(t) - y(t)||^2导数l"(t) = 2 * (h(t) - y(t))
。当s(t)发生变化,L(t)变化来源s(t)影响h(t)和h(t+1),影响L(t)。
h(t+1)不会影响l(t)。
左边式子(dL(t)/dh(t)) * (dh(t)/ds(t)),由t+1到t来逐级反推dL(t)/ds(t)。
神经元self.state.h = self.state.s self.state.o,h(t) = s(t) o(t),dh(t)/ds(t) = o(t),dL(t)/dh(t)是top_diff_h。
top_diff_is,Bottom means input to the layer, top means output of the layer. Caffe also uses this terminology. bottom表示神经网络层输入,top表示神经网络层输出,和caffe概念一致。
def top_diff_is(self, top_diff_h, top_diff_s):
top_diff_h表示当前t时序dL(t)/dh(t), top_diff_s表示t+1时序记忆单元dL(t)/ds(t)。
ds = self.state.o * top_diff_h + top_diff_s do = self.state.s * top_diff_h di = self.state.g * ds dg = self.state.i * ds df = self.s_prev * ds
前缀d表达误差L对某一项导数(directive)。
ds是在根据公式dL(t)/ds(t)计算当前t时序dL(t)/ds(t)。
do是计算dL(t)/do(t),h(t) = s(t) o(t),dh(t)/do(t) = s(t),dL(t)/do(t) = (dL(t)/dh(t)) (dh(t)/do(t)) = top_diff_h * s(t)。
di是计算dL(t)/di(t)。s(t) = f(t) s(t-1) + i(t) g(t)。dL(t)/di(t) = (dL(t)/ds(t)) (ds(t)/di(t)) = ds g(t)。
dg是计算dL(t)/dg(t),dL(t)/dg(t) = (dL(t)/ds(t)) (ds(t)/dg(t)) = ds i(t)。
df是计算dL(t)/df(t),dL(t)/df(t) = (dL(t)/ds(t)) (ds(t)/df(t)) = ds s(t-1)。
di_input = (1. - self.state.i) * self.state.i * di df_input = (1. - self.state.f) * self.state.f * df do_input = (1. - self.state.o) * self.state.o * do dg_input = (1. - self.state.g ** 2) * dg
sigmoid函数导数,tanh函数导数。di_input,(1. - self.state.i) * self.state.i,sigmoid导数,当i神经元输入发生单位变化时输出值有多大变化,再乘di表示当i神经元输入发生单位变化时误差L(t)发生多大变化,dL(t)/d i_input(t)。
self.param.wi_diff += np.outer(di_input, self.xc) self.param.wf_diff += np.outer(df_input, self.xc) self.param.wo_diff += np.outer(do_input, self.xc) self.param.wg_diff += np.outer(dg_input, self.xc) self.param.bi_diff += di_input self.param.bf_diff += df_input self.param.bo_diff += do_input self.param.bg_diff += dg_input
w_diff是权重矩阵误差,b_diff是偏置误差,用于更新。
dxc = np.zeros_like(self.xc) dxc += np.dot(self.param.wi.T, di_input) dxc += np.dot(self.param.wf.T, df_input) dxc += np.dot(self.param.wo.T, do_input) dxc += np.dot(self.param.wg.T, dg_input)
累加输入xdiff,x在四处起作用,四处diff加和后作xdiff。
self.state.bottom_diff_s = ds * self.state.f self.state.bottom_diff_x = dxc[:self.param.x_dim] self.state.bottom_diff_h = dxc[self.param.x_dim:]
bottom_diff_s是在t-1时序上s变化和t时序上s变化时f倍关系。dxc是x和h横向合并矩阵,分别取两部分diff信息bottom_diff_x和bottom_diff_h。
def x_list_clear(self):
self.x_list = [] def x_list_add(self, x): self.x_list.append(x) if len(self.x_list) > len(self.lstm_node_list): # need to add new lstm node, create new state mem lstm_state = LstmState(self.lstm_param.mem_cell_ct, self.lstm_param.x_dim) self.lstm_node_list.append(LstmNode(self.lstm_param, lstm_state)) # get index of most recent x input idx = len(self.x_list) - 1 if idx == 0: # no recurrent inputs yet self.lstm_node_list[idx].bottom_data_is(x) else: s_prev = self.lstm_node_list[idx - 1].state.s h_prev = self.lstm_node_list[idx - 1].state.h self.lstm_node_list[idx].bottom_data_is(x, s_prev, h_prev)
添加训练样本,输入x数据。
def example_0():
# learns to repeat simple sequence from random inputs np.random.seed(0) # parameters for input data dimension and lstm cell count mem_cell_ct = 100 x_dim = 50 concat_len = x_dim + mem_cell_ct lstm_param = LstmParam(mem_cell_ct, x_dim) lstm_net = LstmNetwork(lstm_param) y_list = [-0.5,0.2,0.1, -0.5] input_val_arr = [np.random.random(x_dim) for _ in y_list] for cur_iter in range(100): print "cur iter: ", cur_iter for ind in range(len(y_list)): lstm_net.x_list_add(input_val_arr[ind]) print "y_pred[%d] : %f" % (ind, lstm_net.lstm_node_list[ind].state.h[0]) loss = lstm_net.y_list_is(y_list, ToyLossLayer) print "loss: ", loss lstm_param.apply_diff(lr=0.1) lstm_net.x_list_clear()
初始化LstmParam,指定记忆存储单元数为100,指定输入样本x维度是50。初始化LstmNetwork训练模型,生成4组各50个随机数,分别以[-0.5,0.2,0.1, -0.5]作为y值训练,每次喂50个随机数和一个y值,迭代100次。
lstm输入一串连续质数预估下一个质数。小测试,生成100以内质数,循环拿出50个质数序列作x,第51个质数作y,拿出10个样本参与训练1w次,均方误差由0.17973最终达到了1.05172e-06,几乎完全正确:
import numpy as np
import sys
from lstm import LstmParam, LstmNetwork
class ToyLossLayer:
""" Computes square loss with first element of hidden layer array. """ @classmethod def loss(self, pred, label): return (pred[0] - label) ** 2 @classmethod def bottom_diff(self, pred, label): diff = np.zeros_like(pred) diff[0] = 2 * (pred[0] - label) return diff
class Primes:
def __init__(self): self.primes = list() for i in range(2, 100): is_prime = True for j in range(2, i-1): if i % j == 0: is_prime = False if is_prime: self.primes.append(i) self.primes_count = len(self.primes) def get_sample(self, x_dim, y_dim, index): result = np.zeros((x_dim+y_dim)) for i in range(index, index + x_dim + y_dim): result[i-index] = self.primes[i%self.primes_count]/100.0 return result
def example_0():
mem_cell_ct = 100 x_dim = 50 concat_len = x_dim + mem_cell_ct lstm_param = LstmParam(mem_cell_ct, x_dim) lstm_net = LstmNetwork(lstm_param) primes = Primes() x_list = [] y_list = [] for i in range(0, 10): sample = primes.get_sample(x_dim, 1, i) x = sample[0:x_dim] y = sample[x_dim:x_dim+1].tolist()[0] x_list.append(x) y_list.append(y) for cur_iter in range(10000): if cur_iter % 1000 == 0: print "y_list=", y_list for ind in range(len(y_list)): lstm_net.x_list_add(x_list[ind]) if cur_iter % 1000 == 0: print "y_pred[%d] : %f" % (ind, lstm_net.lstm_node_list[ind].state.h[0]) loss = lstm_net.y_list_is(y_list, ToyLossLayer) if cur_iter % 1000 == 0: print "loss: ", loss lstm_param.apply_diff(lr=0.01) lstm_net.x_list_clear()
if name == "__main__":
example_0()
质数列表全都除以100,这个代码训练数据必须是小于1数值。
torch是深度学习框架。1)tensorflow,谷歌主推,时下最火,小型试验和大型计算都可以,基于python,缺点是上手相对较难,速度一般;2)torch,facebook主推,用于小型试验,开源应用较多,基于lua,上手较快,网上文档较全,缺点是lua语言相对冷门;3)mxnet,Amazon主推,主要用于大型计算,基于python和R,缺点是网上开源项目较少;4)caffe,facebook主推,用于大型计算,基于c++、python,缺点是开发不是很方便;5)theano,速度一般,基于python,评价很好。
torch github上lstm实现项目比较多。
在mac上安装torch。https://github.com/torch/torc... 。
git clone https://github.com/torch/dist... ~/torch --recursive
cd ~/torch; bash install-deps;
./install.sh
qt安装不成功问题,自己多带带安装。
brew install cartr/qt4/qt
安装后需要手工加到~/.bash_profile中。
. ~/torch/install/bin/torch-activate
source ~/.bash_profile后执行th使用torch。
安装itorch,安装依赖
brew install zeromq
brew install openssl
luarocks install luacrypto OPENSSL_DIR=/usr/local/opt/openssl/
git clone https://github.com/facebook/i...
cd iTorch
luarocks make
用卷积神经网络实现图像识别。
创建pattern_recognition.lua:
require "nn"
require "paths"
if (not paths.filep("cifar10torchsmall.zip")) then
os.execute("wget -c https://s3.amazonaws.com/torch7/data/cifar10torchsmall.zip") os.execute("unzip cifar10torchsmall.zip")
end
trainset = torch.load("cifar10-train.t7")
testset = torch.load("cifar10-test.t7")
classes = {"airplane", "automobile", "bird", "cat",
"deer", "dog", "frog", "horse", "ship", "truck"}
setmetatable(trainset,
{__index = function(t, i)
return {t.data[i], t.label[i]}
end}
);
trainset.data = trainset.data:double() -- convert the data from a ByteTensor to a DoubleTensor.
function trainset:size()
return self.data:size(1)
end
mean = {} -- store the mean, to normalize the test set in the future
stdv = {} -- store the standard-deviation for the future
for i=1,3 do -- over each image channel
mean[i] = trainset.data[{ {}, {i}, {}, {} }]:mean() -- mean estimation print("Channel " .. i .. ", Mean: " .. mean[i]) trainset.data[{ {}, {i}, {}, {} }]:add(-mean[i]) -- mean subtraction stdv[i] = trainset.data[{ {}, {i}, {}, {} }]:std() -- std estimation print("Channel " .. i .. ", Standard Deviation: " .. stdv[i]) trainset.data[{ {}, {i}, {}, {} }]:div(stdv[i]) -- std scaling
end
net = nn.Sequential()
net:add(nn.SpatialConvolution(3, 6, 5, 5)) -- 3 input image channels, 6 output channels, 5x5 convolution kernel
net:add(nn.ReLU()) -- non-linearity
net:add(nn.SpatialMaxPooling(2,2,2,2)) -- A max-pooling operation that looks at 2x2 windows and finds the max.
net:add(nn.SpatialConvolution(6, 16, 5, 5))
net:add(nn.ReLU()) -- non-linearity
net:add(nn.SpatialMaxPooling(2,2,2,2))
net:add(nn.View(1655)) -- reshapes from a 3D tensor of 16x5x5 into 1D tensor of 1655
net:add(nn.Linear(1655, 120)) -- fully connected layer (matrix multiplication between input and weights)
net:add(nn.ReLU()) -- non-linearity
net:add(nn.Linear(120, 84))
net:add(nn.ReLU()) -- non-linearity
net:add(nn.Linear(84, 10)) -- 10 is the number of outputs of the network (in this case, 10 digits)
net:add(nn.LogSoftMax()) -- converts the output to a log-probability. Useful for classification problems
criterion = nn.ClassNLLCriterion()
trainer = nn.StochasticGradient(net, criterion)
trainer.learningRate = 0.001
trainer.maxIteration = 5
trainer:train(trainset)
testset.data = testset.data:double() -- convert from Byte tensor to Double tensor
for i=1,3 do -- over each image channel
testset.data[{ {}, {i}, {}, {} }]:add(-mean[i]) -- mean subtraction testset.data[{ {}, {i}, {}, {} }]:div(stdv[i]) -- std scaling
end
predicted = net:forward(testset.data[100])
print(classes[testset.label[100]])
print(predicted:exp())
for i=1,predicted:size(1) do
print(classes[i], predicted[i])
end
correct = 0
for i=1,10000 do
local groundtruth = testset.label[i] local prediction = net:forward(testset.data[i]) local confidences, indices = torch.sort(prediction, true) -- true means sort in descending order if groundtruth == indices[1] then correct = correct + 1 end
end
print(correct, 100*correct/10000 .. " % ")
class_performance = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
for i=1,10000 do
local groundtruth = testset.label[i] local prediction = net:forward(testset.data[i]) local confidences, indices = torch.sort(prediction, true) -- true means sort in descending order if groundtruth == indices[1] then class_performance[groundtruth] = class_performance[groundtruth] + 1 end
end
for i=1,#classes do
print(classes[i], 100*class_performance[i]/1000 .. " %")
end
执行th pattern_recognition.lua。
首先下载cifar10torchsmall.zip样本,有50000张训练用图片,10000张测试用图片,分别都标注,包括airplane、automobile等10种分类,对trainset绑定__index和size方法,兼容nn.Sequential使用,绑定函数看lua教程:http://tylerneylon.com/a/lear... ,trainset数据正规化,数据转成均值为1方差为1的double类型张量。初始化卷积神经网络模型,包括两层卷积、两层池化、一个全连接以及一个softmax层,进行训练,学习率为0.001,迭代5次,模型训练好后对测试机第100号图片做预测,打印出整体正确率以及每种分类准确率。https://github.com/soumith/cv... 。
torch可以方便支持gpu计算,需要对代码做修改。
比较流行的seq2seq基本都用lstm组成编码器解码器模型实现,开源实现大都基于one-hot embedding(没有词向量表达信息量大)。word2vec词向量 seq2seq模型,只有一个lstm单元机器人。
下载《甄环传》小说原文。上网随便百度“甄环传 txt”,下载下来,把文件转码成utf-8编码,把windows回车符都替换成n,以便后续处理。
对甄环传切词。切词工具word_segment.py到github下载,地址在https://github.com/warmheartl... 。
python ./word_segment.py zhenhuanzhuan.txt zhenhuanzhuan.segment
生成词向量。用word2vec,word2vec源码 https://github.com/warmheartl... 。make编译即可执行。
./word2vec -train ./zhenhuanzhuan.segment -output vectors.bin -cbow 1 -size 200 -window 8 -negative 25 -hs 0 -sample 1e-4 -threads 20 -binary 1 -iter 15
生成一个vectors.bin文件,基于甄环传原文生成的词向量文件。
训练代码。
-- coding: utf-8 --import sys
import math
import tflearn
import chardet
import numpy as np
import struct
seq = []
max_w = 50
float_size = 4
word_vector_dict = {}
def load_vectors(input):
"""从vectors.bin加载词向量,返回一个word_vector_dict的词典,key是词,value是200维的向量 """ print "begin load vectors" input_file = open(input, "rb") # 获取词表数目及向量维度 words_and_size = input_file.readline() words_and_size = words_and_size.strip() words = long(words_and_size.split(" ")[0]) size = long(words_and_size.split(" ")[1]) print "words =", words print "size =", size for b in range(0, words): a = 0 word = "" # 读取一个词 while True: c = input_file.read(1) word = word + c if False == c or c == " ": break if a < max_w and c != "n": a = a + 1 word = word.strip() vector = [] for index in range(0, size): m = input_file.read(float_size) (weight,) = struct.unpack("f", m) vector.append(weight) # 将词及其对应的向量存到dict中 word_vector_dict[word.decode("utf-8")] = vector input_file.close() print "load vectors finish"
def init_seq():
"""读取切好词的文本文件,加载全部词序列 """ file_object = open("zhenhuanzhuan.segment", "r") vocab_dict = {} while True: line = file_object.readline() if line: for word in line.decode("utf-8").split(" "): if word_vector_dict.has_key(word): seq.append(word_vector_dict[word]) else: break file_object.close()
def vector_sqrtlen(vector):
len = 0 for item in vector: len += item * item len = math.sqrt(len) return len
def vector_cosine(v1, v2):
if len(v1) != len(v2): sys.exit(1) sqrtlen1 = vector_sqrtlen(v1) sqrtlen2 = vector_sqrtlen(v2) value = 0 for item1, item2 in zip(v1, v2): value += item1 * item2 return value / (sqrtlen1*sqrtlen2)
def vector2word(vector):
max_cos = -10000 match_word = "" for word in word_vector_dict: v = word_vector_dict[word] cosine = vector_cosine(vector, v) if cosine > max_cos: max_cos = cosine match_word = word return (match_word, max_cos)
def main():
load_vectors("./vectors.bin") init_seq() xlist = [] ylist = [] test_X = None #for i in range(len(seq)-100): for i in range(10): sequence = seq[i:i+20] xlist.append(sequence) ylist.append(seq[i+20]) if test_X is None: test_X = np.array(sequence) (match_word, max_cos) = vector2word(seq[i+20]) print "right answer=", match_word, max_cos X = np.array(xlist) Y = np.array(ylist) net = tflearn.input_data([None, 20, 200]) net = tflearn.lstm(net, 200) net = tflearn.fully_connected(net, 200, activation="linear") net = tflearn.regression(net, optimizer="sgd", learning_rate=0.1, loss="mean_square") model = tflearn.DNN(net) model.fit(X, Y, n_epoch=500, batch_size=10,snapshot_epoch=False,show_metric=True) model.save("model") predict = model.predict([test_X]) #print predict #for v in test_X: # print vector2word(v) (match_word, max_cos) = vector2word(predict[0]) print "predict=", match_word, max_cos
main()
load_vectors从vectors.bin加载词向量,init_seq加载甄环传切词文本并存到一个序列里,vector2word求距离某向量最近词,模型只有一个lstm单元。
经过500个epoch训练,均方损失降到0.33673,以0.941794432002余弦相似度预测出下一个字。
强大gpu,调整参数,整篇文章都训练,修改代码predict部分,不断输出下一个字,自动吐出甄环体。基于tflearn实现,tflearn官方文档examples实现seq2seq直接调用tensorflow中的tensorflow/python/ops/seq2seq.py,基于one-hot embedding方法,一定没有词向量效果好。
详情请阅读原文
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/41675.html
摘要:经过第一步的处理已经把古诗词词语转换为可以机器学习建模的数字形式,因为我们采用算法进行古诗词生成,所以还需要构建输入到输出的映射处理。 LSTM 介绍 序列化数据即每个样本和它之前的样本存在关联,前一数据和后一个数据有顺序关系。深度学习中有一个重要的分支是专门用来处理这样的数据的——循环神经网络。循环神经网络广泛应用在自然语言处理领域(NLP),今天我们带你从一个实际的例子出发,介绍循...
摘要:深度学习推动领域发展的新引擎图拥有记忆能力最早是提出用来解决图像识别的问题的一种深度神经网络。深度学习推动领域发展的新引擎图深度神经网络最近相关的改进模型也被用于领域。 从2015年ACL会议的论文可以看出,目前NLP最流行的方法还是机器学习尤其是深度学习,所以本文会从深度神经网络的角度分析目前NLP研究的热点和未来的发展方向。我们主要关注Word Embedding、RNN/LSTM/CN...
阅读 1227·2021-11-11 16:54
阅读 879·2021-10-19 11:44
阅读 1339·2021-09-22 15:18
阅读 2448·2019-08-29 16:26
阅读 2949·2019-08-29 13:57
阅读 3096·2019-08-26 13:32
阅读 1082·2019-08-26 11:58
阅读 2328·2019-08-26 10:37