资讯专栏INFORMATION COLUMN

Python Pandas与Numpy中axis参数的二义性

glumes / 1484人阅读

摘要:是程序员的好去处,本公众号将以为主题,开始一个系列,争取做到每周一篇,翻译并帮助学习者一起理解一些有代表性的案例。所以问题当中第一个列子代表沿着列水平方向计算均值,而第二个列子代表将对应的列标签们沿着水平的方向依次删掉。

Stackoverflow.com是程序员的好去处,本公众号将以pandas为主题,开始一个系列,争取做到每周一篇,翻译并帮助pandas学习者一起理解一些有代表性的案例。今天的主题就是Pandas与Numpy中一个非常重要的参数:axis.(轴)

Stackoverflow问题如下:

python中的axis究竟是如何定义的呢?他们究竟代表是DataFrame的行还是列?考虑以下代码:

>>>df = pd.DataFrame([[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]], 
columns=["col1", "col2", "col3", "col4"])
>>>df
   col1  col2  col3  col4
    0     1     1     1     1
    1     2     2     2     2
    2     3     3     3     3

如果我们调用df.mean(axis=1),我们将得到按行计算的均值

>>> df.mean(axis=1)
0    1
1    2
2    3

然而,如果我们调用 df.drop((name, axis=1),我们实际上删掉了一列,而不是一行:

>>> df.drop("col4", axis=1)
   col1  col2  col3
0     1     1     1
1     2     2     2
2     3     3     3

Can someone help me understand what is meant by an "axis" in pandas/numpy/scipy?
有人能帮我理解一下,在pandas、numpy、scipy三都当中axis参数的真实含义吗?

投票最高的答案揭示了问题的本质:

其实问题理解axis有问题,df.mean其实是在每一行上取所有列的均值,而不是保留每一列的均值。也许简单的来记就是axis=0代表往跨行(down),而axis=1代表跨列(across),作为方法动作的副词(译者注)

换句话说:

使用0值表示沿着每一列或行标签索引值向下执行方法

使用1值表示沿着每一行或者列标签模向执行对应的方法

下图代表在DataFrame当中axis为0和1时分别代表的含义:

另外,记住,Pandas保持了Numpy对关键字axis的用法,用法在Numpy库的词汇表当中有过解释:

轴用来为超过一维的数组定义的属性,二维数据拥有两个轴:第0轴沿着行的垂直往下,第1轴沿着列的方向水平延伸。

所以问题当中第一个列子 df.mean(axis=1)代表沿着列水平方向计算均值,而第二个列子df.drop(name, axis=1) 代表将name对应的列标签(们)沿着水平的方向依次删掉。

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/41430.html

相关文章

  • 一文带你斩杀PythonNumpy☀️Pandas全部操作【全网最详细】❗❗❗

    目录Numpy简介Numpy操作集合1、不同维度数据的表示1.1 一维数据的表示1.2 二维数据的表示1.3 三维数据的表示2、 为什么要使用Numpy2.1、Numpy的ndarray具有广播功能2.2 Numpy数组的性能比Python原生数据类型高3 ndarray的属性和基本操作3.1 ndarray的基本属性3.2 ndarray元素类型3.3 创建ndarray的方式3.4 ndarr...

    asoren 评论0 收藏0
  • python综合学习三之NumpyPandas

    摘要:本章学习两个科学运算当中最为重要的两个模块,一个是一个是。这种工具可用来存储和处理大型矩阵,比自身的嵌套列表结构要高效的多该结构也可以用来表示矩阵。专为进行严格的数字处理而产生。可以通过函数对相应值进行打印检验。 本章学习两个科学运算当中最为重要的两个模块,一个是 numpy,一个是 pandas。任何关于数据分析的模块都少不了它们两个。 一、numpy & pandas特点 NumP...

    tinylcy 评论0 收藏0
  • 【数据科学系统学习】Python # 数据分析基本操作[二] pandas

    摘要:中面向行和面向列的操作基本是平衡的。用层次化索引,将其表示为更高维度的数据。使用浮点值表示浮点和非浮点数组中的缺失数据。索引的的格式化输出形式选取数据子集在内层中进行选取层次化索引在数据重塑和基于分组的操作中很重要。 我们在上一篇介绍了 NumPy,本篇介绍 pandas。 pandas入门 Pandas 是基于Numpy构建的,让以NumPy为中心的应用变的更加简单。 pandas...

    jayzou 评论0 收藏0
  • python综合学习四之NumpyPandas(下)

    摘要:一基础运算二通过上一节的学习,我们可以了解到一部分矩阵中元素的计算和查找操作。相应的,在矩阵的个元素中,最小值即,对应索引,最大值为,对应索引为。确认是否与相同。要使用,首先需要了解他主要两个数据结构和。 这一节继续学习Numpy和Pandas。 一、numpy基础运算二 通过上一节的学习,我们可以了解到一部分矩阵中元素的计算和查找操作。然而在日常使用中,对应元素的索引也是非常重要的。...

    yeyan1996 评论0 收藏0
  • 8个Python高效数据分析技巧

    摘要:以指定数目均匀分割区间。所以给定区间和,以及等分分割点数目,将返回一个数组。将一个函数应用于指定轴上的每一个元素。如果您熟悉,那么你也许听说过数据透视表。内置的函数以的形式创建电子表格样式的数据透视表,它可以帮助我们快速查看某几列的数据。 一行代码定义List showImg(https://segmentfault.com/img/remote/1460000015965704?...

    FullStackDeveloper 评论0 收藏0

发表评论

0条评论

glumes

|高级讲师

TA的文章

阅读更多
最新活动
阅读需要支付1元查看
<