资讯专栏INFORMATION COLUMN

Scrapy 框架入门简介

Coding01 / 1398人阅读

摘要:解析的方法,每个初始完成下载后将被调用,调用的时候传入从每一个传回的对象来作为唯一参数,主要作用如下负责解析返回的网页数据,提取结构化数据生成生成需要下一页的请求。

Scrapy 框架

Scrapy是用纯Python实现一个为了爬取网站数据、提取结构性数据而编写的应用框架,用途非常广泛。

框架的力量,用户只需要定制开发几个模块就可以轻松的实现一个爬虫,用来抓取网页内容以及各种图片,非常之方便。

Scrapy 使用了 Twisted"twɪstɪd异步网络框架来处理网络通讯,可以加快我们的下载速度,不用自己去实现异步框架,并且包含了各种中间件接口,可以灵活的完成各种需求。

Scrapy架构图(绿线是数据流向):

Scrapy Engine(引擎): 负责Spider、ItemPipeline、Downloader、Scheduler中间的通讯,信号、数据传递等。

Scheduler(调度器): 它负责接受引擎发送过来的Request请求,并按照一定的方式进行整理排列,入队,当引擎需要时,交还给引擎。

Downloader(下载器):负责下载Scrapy Engine(引擎)发送的所有Requests请求,并将其获取到的Responses交还给Scrapy Engine(引擎),由引擎交给Spider来处理,

Spider(爬虫):它负责处理所有Responses,从中分析提取数据,获取Item字段需要的数据,并将需要跟进的URL提交给引擎,再次进入Scheduler(调度器),

Item Pipeline(管道):它负责处理Spider中获取到的Item,并进行进行后期处理(详细分析、过滤、存储等)的地方.

Downloader Middlewares(下载中间件):你可以当作是一个可以自定义扩展下载功能的组件。

Spider Middlewares(Spider中间件):你可以理解为是一个可以自定扩展和操作引擎和Spider中间通信的功能组件(比如进入Spider的Responses;和从Spider出去的Requests)

Scrapy的运作流程

代码写好,程序开始运行...

1 引擎:Hi!Spider, 你要处理哪一个网站?

2 Spider:老大要我处理xxxx.com。

3 引擎:你把第一个需要处理的URL给我吧。

4 Spider:给你,第一个URL是xxxxxxx.com。

5 引擎:Hi!调度器,我这有request请求你帮我排序入队一下。

6 调度器:好的,正在处理你等一下。

7 引擎:Hi!调度器,把你处理好的request请求给我。

8 调度器:给你,这是我处理好的request

9 引擎:Hi!下载器,你按照老大的下载中间件的设置帮我下载一下这个request请求

10 下载器:好的!给你,这是下载好的东西。(如果失败:sorry,这个request下载失败了。然后引擎告诉调度器,这个request下载失败了,你记录一下,我们待会儿再下载)

11 引擎:Hi!Spider,这是下载好的东西,并且已经按照老大的下载中间件处理过了,你自己处理一下(注意!这儿responses默认是交给def parse()这个函数处理的)

12 Spider:(处理完毕数据之后对于需要跟进的URL),Hi!引擎,我这里有两个结果,这个是我需要跟进的URL,还有这个是我获取到的Item数据。

13 引擎:Hi !管道 我这儿有个item你帮我处理一下!调度器!这是需要跟进URL你帮我处理下。然后从第四步开始循环,直到获取完老大需要全部信息。

14 管道``调度器:好的,现在就做!

注意!只有当调度器中不存在任何request了,整个程序才会停止,(也就是说,对于下载失败的URL,Scrapy也会重新下载。)


制作 Scrapy 爬虫 一共需要4步:

新建项目 (scrapy startproject xxx):新建一个新的爬虫项目

明确目标 (编写items.py):明确你想要抓取的目标

制作爬虫 (spiders/xxspider.py):制作爬虫开始爬取网页

存储内容 (pipelines.py):设计管道存储爬取内容


Scrapy的安装介绍

Scrapy框架官方网址:http://doc.scrapy.org/en/latest

Scrapy中文维护站点:http://scrapy-chs.readthedocs...

Windows 安装方式

Python 2 / 3
升级pip版本:pip install --upgrade pip
通过pip 安装 Scrapy 框架pip install Scrapy

Ubuntu 需要9.10或以上版本安装方式

Python 2 / 3
安装非Python的依赖 sudo apt-get install python-dev python-pip libxml2-dev libxslt1-dev zlib1g-dev libffi-dev libssl-dev
通过pip 安装 Scrapy 框架 sudo pip install scrapy
安装后,只要在命令终端输入 scrapy,提示类似以下结果,代表已经安装成功

具体Scrapy安装流程参考:http://doc.scrapy.org/en/late... 里面有各个平台的安装方法


入门案例 学习目标

创建一个Scrapy项目

定义提取的结构化数据(Item)

编写爬取网站的 Spider 并提取出结构化数据(Item)

编写 Item Pipelines 来存储提取到的Item(即结构化数据)

一. 新建项目(scrapy startproject)

在开始爬取之前,必须创建一个新的Scrapy项目。进入自定义的项目目录中,运行下列命令:

scrapy startproject mySpider

其中, mySpider 为项目名称,可以看到将会创建一个 mySpider 文件夹,目录结构大致如下:

下面来简单介绍一下各个主要文件的作用:

scrapy.cfg :项目的配置文件

mySpider/ :项目的Python模块,将会从这里引用代码

mySpider/items.py :项目的目标文件

mySpider/pipelines.py :项目的管道文件

mySpider/settings.py :项目的设置文件

mySpider/spiders/ :存储爬虫代码目录

二、明确目标(mySpider/items.py)

我们打算抓取:http://www.itcast.cn/channel/... 网站里的所有讲师的姓名、职称和个人信息。

打开mySpider目录下的items.py

Item 定义结构化数据字段,用来保存爬取到的数据,有点像Python中的dict,但是提供了一些额外的保护减少错误。

可以通过创建一个 scrapy.Item 类, 并且定义类型为
scrapy.Field的类属性来定义一个Item(可以理解成类似于ORM的映射关系)。

接下来,创建一个ItcastItem 类,和构建item模型(model)。

import scrapy

class ItcastItem(scrapy.Item):

   name = scrapy.Field()
   level = scrapy.Field()
   info = scrapy.Field()

三、制作爬虫 (spiders/itcastSpider.py)

爬虫功能要分两步:

1. 爬数据

在当前目录下输入命令,将在mySpider/spider目录下创建一个名为itcast的爬虫,并指定爬取域的范围:
scrapy genspider itcast "itcast.cn"
打开 mySpider/spider目录里的 itcast.py,默认增加了下列代码:

import scrapy

class ItcastSpider(scrapy.Spider):
    name = "itcast"
    allowed_domains = ["itcast.cn"]
    start_urls = (
        "http://www.itcast.cn/",
    )

    def parse(self, response):
        pass

其实也可以由我们自行创建itcast.py并编写上面的代码,只不过使用命令可以免去编写固定代码的麻烦

要建立一个Spider, 你必须用scrapy.Spider类创建一个子类,并确定了三个强制的属性 和 一个方法。

name = "" :这个爬虫的识别名称,必须是唯一的,在不同的爬虫必须定义不同的名字。

allow_domains = [] 是搜索的域名范围,也就是爬虫的约束区域,规定爬虫只爬取这个域名下的网页,不存在的URL会被忽略。

start_urls = () :爬取的URL元祖/列表。爬虫从这里开始抓取数据,所以,第一次下载的数据将会从这些urls开始。其他子URL将会从这些起始URL中继承性生成。

parse(self, response) :解析的方法,每个初始URL完成下载后将被调用,调用的时候传入从每一个URL传回的Response对象来作为唯一参数,主要作用如下:

负责解析返回的网页数据(response.body),提取结构化数据(生成item)
生成需要下一页的URL请求。
将start_urls的值修改为需要爬取的第一个url

start_urls = ("http://www.itcast.cn/channel/teacher.shtml",)

修改parse()方法

def parse(self, response):
    filename = "teacher.html"
    open(filename, "w").write(response.body)

然后运行一下看看,在mySpider目录下执行:

scrapy crawl itcast

是的,就是 itcast,看上面代码,它是 ItcastSpider 类的 name 属性,也就是使用 scrapy genspider命令的唯一爬虫名。

运行之后,如果打印的日志出现 [scrapy] INFO: Spider closed (finished),代表执行完成。 之后当前文件夹中就出现了一个 teacher.html 文件,里面就是我们刚刚要爬取的网页的全部源代码信息。

**注意,Python2.x默认编码环境是ASCII,当和取回的数据编码格式不一致时,可能会造成乱码;
我们可以指定保存内容的编码格式,一般情况下,我们可以在代码最上方添加:**

import sys
reload(sys)
sys.setdefaultencoding("utf-8")

这三行代码是Python2.x里解决中文编码的万能钥匙,经过这么多年的吐槽后Python3学乖了,默认编码是Unicode了...(祝大家早日拥抱Python3)
2. 取数据

爬取整个网页完毕,接下来的就是的取过程了,首先观察页面源码:

xxx

xxxxx

xxxxxxxx

是不是一目了然?直接上XPath开始提取数据吧。

我们之前在mySpider/items.py 里定义了一个ItcastItem类。 这里引入进来

  from mySpider.items import ItcastItem

然后将我们得到的数据封装到一个 ItcastItem 对象中,可以保存每个老师的属性:

from mySpider.items import ItcastItem

def parse(self, response):
    #open("teacher.html","wb").write(response.body).close()

    # 存放老师信息的集合
    items = []

    for each in response.xpath("//div[@class="li_txt"]"):
        # 将我们得到的数据封装到一个 `ItcastItem` 对象
        item = ItcastItem()
        #extract()方法返回的都是unicode字符串
        name = each.xpath("h3/text()").extract()
        title = each.xpath("h4/text()").extract()
        info = each.xpath("p/text()").extract()

        #xpath返回的是包含一个元素的列表
        item["name"] = name[0]
        item["title"] = title[0]
        item["info"] = info[0]

        items.append(item)

    # 直接返回最后数据
    return items
我们暂时先不处理管道,后面会详细介绍。
保存数据

scrapy保存信息的最简单的方法主要有四种,-o 输出指定格式的文件,,命令如下:

json格式,默认为Unicode编码

scrapy crawl itcast -o teachers.json

json lines格式,默认为Unicode编码

scrapy crawl itcast -o teachers.jsonl

csv 逗号表达式,可用Excel打开

scrapy crawl itcast -o teachers.csv

xml格式

scrapy crawl itcast -o teachers.xml

思考

如果将代码改成下面形式,结果完全一样。

请思考 yield 在这里的作用:

from mySpider.items import ItcastItem

def parse(self, response):
    #open("teacher.html","wb").write(response.body).close()

    # 存放老师信息的集合
    #items = []

    for each in response.xpath("//div[@class="li_txt"]"):
        # 将我们得到的数据封装到一个 `ItcastItem` 对象
        item = ItcastItem()
        #extract()方法返回的都是unicode字符串
        name = each.xpath("h3/text()").extract()
        title = each.xpath("h4/text()").extract()
        info = each.xpath("p/text()").extract()

        #xpath返回的是包含一个元素的列表
        item["name"] = name[0]
        item["title"] = title[0]
        item["info"] = info[0]

        #items.append(item)

        #将获取的数据交给pipelines
        yield item

    # 返回数据,不经过pipeline
    #return items

思考过后 下面给出
Python中yield的解释

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/41386.html

相关文章

  • 爬虫入门

    摘要:通用网络爬虫通用网络爬虫又称全网爬虫,爬取对象从一些种子扩充到整个。为提高工作效率,通用网络爬虫会采取一定的爬取策略。介绍是一个国人编写的强大的网络爬虫系统并带有强大的。 爬虫 简单的说网络爬虫(Web crawler)也叫做网络铲(Web scraper)、网络蜘蛛(Web spider),其行为一般是先爬到对应的网页上,再把需要的信息铲下来。 分类 网络爬虫按照系统结构和实现技术,...

    defcon 评论0 收藏0
  • 爬虫入门

    摘要:通用网络爬虫通用网络爬虫又称全网爬虫,爬取对象从一些种子扩充到整个。为提高工作效率,通用网络爬虫会采取一定的爬取策略。介绍是一个国人编写的强大的网络爬虫系统并带有强大的。 爬虫 简单的说网络爬虫(Web crawler)也叫做网络铲(Web scraper)、网络蜘蛛(Web spider),其行为一般是先爬到对应的网页上,再把需要的信息铲下来。 分类 网络爬虫按照系统结构和实现技术,...

    Invoker 评论0 收藏0
  • 23个Python爬虫开源项目代码,包含微信、淘宝、豆瓣、知乎、微博等

    摘要:今天为大家整理了个爬虫项目。地址新浪微博爬虫主要爬取新浪微博用户的个人信息微博信息粉丝和关注。代码获取新浪微博进行登录,可通过多账号登录来防止新浪的反扒。涵盖链家爬虫一文的全部代码,包括链家模拟登录代码。支持微博知乎豆瓣。 showImg(https://segmentfault.com/img/remote/1460000018452185?w=1000&h=667); 今天为大家整...

    jlanglang 评论0 收藏0
  • Scrapy入门程序点评

    摘要:本文大部分内容摘抄自官网的,看到巧妙之处则加了点评。,接下来的工作至此,框架已经明确选定了,接下来,我们将进一步研读的文档,研究怎样把的封装成需要的。,文档修改历史,首次发布 showImg(https://segmentfault.com/img/bVx6ZU); 1,引言 在《Scrapy的架构初探》一文,我基于爬虫开发的经验对Scrapy官网文章作了点评和解读,事件驱动的异步处理...

    baiy 评论0 收藏0

发表评论

0条评论

Coding01

|高级讲师

TA的文章

阅读更多
最新活动
阅读需要支付1元查看
<