摘要:在这里汇总了一个现在和经常使用的论文,所有文章都链接到了上面。如果你对感兴趣,可以访问这个专题。作者微信号简书地址是一个专注于算法实战的平台,从基础的算法到人工智能算法都有设计。加入实战微信群,实战群,算法微信群,算法群。
作者:chen_h
微信号 & QQ:862251340
微信公众号:coderpai
简书地址:https://www.jianshu.com/p/b7f...
关于生成对抗网络(GAN)的新论文每周都会出现很多,跟踪发现他们非常难,更不用说去辨别那些研究人员对 GAN 各种奇奇怪怪,令人难以置信的创造性的命名!当然,你可以通过阅读 OpanAI 的博客或者 KDNuggets 中的概述性阅读教程,了解更多的有关 GAN 的信息。
在这里汇总了一个现在和经常使用的GAN论文,所有文章都链接到了 Arxiv 上面。
GAN — Generative Adversarial Networks
3D-GAN — Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
AC-GAN — Conditional Image Synthesis With Auxiliary Classifier GANs
AdaGAN — AdaGAN: Boosting Generative Models
AffGAN — Amortised MAP Inference for Image Super-resolution
AL-CGAN — Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts
ALI — Adversarially Learned Inference
AMGAN — Generative Adversarial Nets with Labeled Data by Activation Maximization
AnoGAN — Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
ArtGAN — ArtGAN: Artwork Synthesis with Conditional Categorial GANs
b-GAN — b-GAN: Unified Framework of Generative Adversarial Networks
Bayesian GAN — Deep and Hierarchical Implicit Models
BEGAN — BEGAN: Boundary Equilibrium Generative Adversarial Networks
BiGAN — Adversarial Feature Learning
BS-GAN — Boundary-Seeking Generative Adversarial Networks
CGAN — Conditional Generative Adversarial Nets
CCGAN — Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
CatGAN — Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
CoGAN — Coupled Generative Adversarial Networks
Context-RNN-GAN — Contextual RNN-GANs for Abstract Reasoning Diagram Generation
C-RNN-GAN — C-RNN-GAN: Continuous recurrent neural networks with adversarial training
CVAE-GAN — CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
CycleGAN — Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
DTN — Unsupervised Cross-Domain Image Generation
DCGAN — Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
DiscoGAN — Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
DR-GAN — Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
DualGAN — DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
EBGAN — Energy-based Generative Adversarial Network
f-GAN — f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
GAWWN — Learning What and Where to Draw
GoGAN — Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking
GP-GAN — GP-GAN: Towards Realistic High-Resolution Image Blending
IAN — Neural Photo Editing with Introspective Adversarial Networks
iGAN — Generative Visual Manipulation on the Natural Image Manifold
IcGAN — Invertible Conditional GANs for image editing
ID-CGAN- Image De-raining Using a Conditional Generative Adversarial Network
Improved GAN — Improved Techniques for Training GANs
InfoGAN — InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
LAPGAN — Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks
LR-GAN — LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation
LSGAN — Least Squares Generative Adversarial Networks
LS-GAN — Loss-Sensitive Generative Adversarial Networks on Lipschitz Densities
MGAN — Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks
MAGAN — MAGAN: Margin Adaptation for Generative Adversarial Networks
MAD-GAN — Multi-Agent Diverse Generative Adversarial Networks
MalGAN — Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN
MARTA-GAN — Deep Unsupervised Representation Learning for Remote Sensing Images
McGAN — McGan: Mean and Covariance Feature Matching GAN
MedGAN — Generating Multi-label Discrete Electronic Health Records using Generative Adversarial Networks
MIX+GAN — Generalization and Equilibrium in Generative Adversarial Nets (GANs)
MPM-GAN — Message Passing Multi-Agent GANs
MV-BiGAN — Multi-view Generative Adversarial Networks
pix2pix — Image-to-Image Translation with Conditional Adversarial Networks
PPGN — Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space
PrGAN — 3D Shape Induction from 2D Views of Multiple Objects
RenderGAN — RenderGAN: Generating Realistic Labeled Data
RTT-GAN — Recurrent Topic-Transition GAN for Visual Paragraph Generation
SGAN — Stacked Generative Adversarial Networks
SGAN — Texture Synthesis with Spatial Generative Adversarial Networks
SAD-GAN — SAD-GAN: Synthetic Autonomous Driving using Generative Adversarial Networks
SalGAN — SalGAN: Visual Saliency Prediction with Generative Adversarial Networks
SEGAN — SEGAN: Speech Enhancement Generative Adversarial Network
SeGAN — SeGAN: Segmenting and Generating the Invisible
SeqGAN — SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient
SketchGAN — Adversarial Training For Sketch Retrieval
SL-GAN — Semi-Latent GAN: Learning to generate and modify facial images from attributes
Softmax-GAN — Softmax GAN
SRGAN — Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
S²GAN — Generative Image Modeling using Style and Structure Adversarial Networks
SSL-GAN — Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
StackGAN — StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks
TGAN — Temporal Generative Adversarial Nets
TAC-GAN — TAC-GAN — Text Conditioned Auxiliary Classifier Generative Adversarial Network
TP-GAN — Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis
Triple-GAN — Triple Generative Adversarial Nets
Unrolled GAN — Unrolled Generative Adversarial Networks
VGAN — Generating Videos with Scene Dynamics
VGAN — Generative Adversarial Networks as Variational Training of Energy Based Models
VAE-GAN — Autoencoding beyond pixels using a learned similarity metric
VariGAN — Multi-View Image Generation from a Single-View
ViGAN — Image Generation and Editing with Variational Info Generative AdversarialNetworks
WGAN — Wasserstein GAN
WGAN-GP — Improved Training of Wasserstein GANs
WaterGAN — WaterGAN: Unsupervised Generative Network to Enable Real-time Color Correction of Monocular Underwater Images
如果你对 GAN 感兴趣,可以访问这个专题。欢迎交流。
作者:chen_h
微信号 & QQ:862251340
简书地址:https://www.jianshu.com/p/b7f...
CoderPai 是一个专注于算法实战的平台,从基础的算法到人工智能算法都有设计。如果你对算法实战感兴趣,请快快关注我们吧。加入AI实战微信群,AI实战QQ群,ACM算法微信群,ACM算法QQ群。长按或者扫描如下二维码,关注 “CoderPai” 微信号(coderpai)
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/41154.html
摘要:特征匹配改变了生成器的损失函数,以最小化真实图像的特征与生成的图像之间的统计差异。我们建议读者检查上使用的损失函数和相应的性能,并通过实验验证来设置。相反,我们可能会将注意力转向寻找在生成器性能不佳时不具有接近零梯度的损失函数。 前 言GAN模型相比较于其他网络一直受困于三个问题的掣肘: 1. 不收敛;模型训练不稳定,收敛的慢,甚至不收敛; 2. mode collapse; 生成器产生的...
摘要:元旦假期即将来临,我们精心准备了这本阿里巴巴机器智能计算机视觉技术精选,收录了顶级会议阿里论文,送给计划在假期充电的同学们,也希望能和更多学术界工业界同仁一起探讨交流。 当下计算机视觉技术无疑是AI浪潮中最火热的议题之一。视觉技术的渗透,既可以对传统商业进行改造使之看到新的商业机会,还可以创造全新的商业需求和市场。无论在电商、安防、娱乐,还是在工业、医疗、自动驾驶领域,计算机视觉技术都...
摘要:判别器胜利的条件则是很好地将真实图像自编码,以及很差地辨识生成的图像。 先看一张图:下图左右两端的两栏是真实的图像,其余的是计算机生成的。过渡自然,效果惊人。这是谷歌本周在 arXiv 发表的论文《BEGAN:边界均衡生成对抗网络》得到的结果。这项工作针对 GAN 训练难、控制生成样本多样性难、平衡鉴别器和生成器收敛难等问题,提出了改善。尤其值得注意的,是作者使用了很简单的结构,经过常规训练...
摘要:另外,在损失函数中加入感知正则化则在一定程度上可缓解该问题。替代损失函数修复缺陷的最流行的补丁是。的作者认为传统损失函数并不会使收集的数据分布接近于真实数据分布。原来损失函数中的对数损失并不影响生成数据与决策边界的距离。 尽管 GAN 领域的进步令人印象深刻,但其在应用过程中仍然存在一些困难。本文梳理了 GAN 在应用过程中存在的一些难题,并提出了的解决方法。使用 GAN 的缺陷众所周知,G...
摘要:二是精度查全率和得分,用来衡量判别式模型的质量。精度查全率和团队还用他们的三角形数据集,测试了样本量为时,大范围搜索超参数来进行计算的精度和查全率。 从2014年诞生至今,生成对抗网络(GAN)热度只增不减,各种各样的变体层出不穷。有位名叫Avinash Hindupur的国际友人建立了一个GAN Zoo,他的动物园里目前已经收集了多达214种有名有姓的GAN。DeepMind研究员们甚至将...
阅读 1851·2021-11-25 09:43
阅读 3133·2021-11-15 11:38
阅读 2690·2019-08-30 13:04
阅读 467·2019-08-29 11:07
阅读 1466·2019-08-26 18:37
阅读 2669·2019-08-26 14:07
阅读 567·2019-08-26 13:52
阅读 2254·2019-08-26 12:09