摘要:作者微信号微信公众号简书地址我把这篇文章分为四个部分机器学习,,和数学。在这篇文章中,我把每个主题的教程数量都是控制在五到六个,这些精选出来的教程都是非常重要的。每一个链接都会链接到别的链接,从而导致很多新的教程。
作者:chen_h
微信号 & QQ:862251340
微信公众号:coderpai
简书地址:http://www.jianshu.com/p/2be3...
我把这篇文章分为四个部分:机器学习,NLP,Python 和 数学。我在每一部分都会包含一些关键主题,但是网上资料太广泛了,所以我不可能包括每一个可能的主题。
如果你发现好的教程,请告诉我。在这篇文章中,我把每个主题的教程数量都是控制在五到六个,这些精选出来的教程都是非常重要的。每一个链接都会链接到别的链接,从而导致很多新的教程。
Machine LearningMachine Learning is Fun! (medium.com/@ageitgey)
Machine Learning Crash Course: Part I, Part II, Part III (Machine Learning at Berkeley)
An Introduction to Machine Learning Theory and Its Applications: A Visual Tutorial with Examples (toptal.com)
A Gentle Guide to Machine Learning (monkeylearn.com)
Which machine learning algorithm should I use? (sas.com)
Activation and Loss FunctionsSigmoid neurons (neuralnetworksanddeeplearning.com)
What is the role of the activation function in a neural network? (quora.com)
[Comprehensive list of activation functions in neural networks with pros/cons]12
Activation functions and it’s types-Which is better? (medium.com)
Making Sense of Logarithmic Loss (exegetic.biz)
Loss Functions (Stanford CS231n)
L1 vs. L2 Loss function (rishy.github.io)
The cross-entropy cost function (neuralnetworksanddeeplearning.com)
BiasRole of Bias in Neural Networks (stackoverflow.com)
Bias Nodes in Neural Networks (makeyourownneuralnetwork.blogspot.com)
What is bias in artificial neural network? (quora.com)
PerceptronPerceptrons (neuralnetworksanddeeplearning.com)
The Perception (natureofcode.com)
Single-layer Neural Networks (Perceptrons) (dcu.ie)
From Perceptrons to Deep Networks (toptal.com)
RegressionIntroduction to linear regression analysis (duke.edu)
Linear Regression (ufldl.stanford.edu)
Linear Regression (readthedocs.io)
Logistic Regression (readthedocs.io)
[Simple Linear Regression Tutorial for Machine Learning]29
[Logistic Regression Tutorial for Machine Learning]30
Softmax Regression (ufldl.stanford.edu)
Gradient DescentLearning with gradient descent (neuralnetworksanddeeplearning.com)
Gradient Descent (iamtrask.github.io)
How to understand Gradient Descent algorithm (kdnuggets.com)
[An overview of gradient descent optimization algorithms]35
Optimization: Stochastic Gradient Descent (Stanford CS231n)
Generative LearningGenerative Learning Algorithms (Stanford CS229)
A practical explanation of a Naive Bayes classifier (monkeylearn.com)
Support Vector MachinesAn introduction to Support Vector Machines (SVM) (monkeylearn.com)
Support Vector Machines (Stanford CS229)
Linear classification: Support Vector Machine, Softmax (Stanford 231n)
BackpropagationYes you should understand backprop (medium.com/@karpathy)
Can you give a visual explanation for the back propagation algorithm for neural networks? (github.com/rasbt)
[How the backpropagation algorithm works]45
Backpropagation Through Time and Vanishing Gradients (wildml.com)
[A Gentle Introduction to Backpropagation Through Time]47
Backpropagation, Intuitions (Stanford CS231n)
Deep LearningDeep Learning in a Nutshell (nikhilbuduma.com)
A Tutorial on Deep Learning (Quoc V. Le)
What is Deep Learning? (machinelearningmastery.com)
What’s the Difference Between Artificial Intelligence, Machine Learning, and Deep Learning? (nvidia.com)
Optimization and Dimensionality ReductionSeven Techniques for Data Dimensionality Reduction (knime.org)
Principal components analysis (Stanford CS229)
Dropout: A simple way to improve neural networks (Hinton @ NIPS 2012)
How to train your Deep Neural Network (rishy.github.io)
Long Short Term Memory(LSTM)[A Gentle Introduction to Long Short-Term Memory Networks by the Experts]57
Understanding LSTM Networks (colah.github.io)
Exploring LSTMs (echen.me)
Anyone Can Learn To Code an LSTM-RNN in Python (iamtrask.github.io)
Convolutional Neural Networks (CNNs)Introducing convolutional networks (neuralnetworksanddeeplearning.com)
[Deep Learning and Convolutional Neural Networks]62
Conv Nets: A Modular Perspective (colah.github.io)
Understanding Convolutions (colah.github.io)
Recurrent Neural Nets (RNNs)Recurrent Neural Networks Tutorial (wildml.com)
Attention and Augmented Recurrent Neural Networks (distill.pub)
[The Unreasonable Effectiveness of Recurrent Neural Networks]68
A Deep Dive into Recurrent Neural Nets (nikhilbuduma.com)
Reinforcement Learning[Simple Beginner’s guide to Reinforcement Learning & its implementation]70
A Tutorial for Reinforcement Learning (mst.edu)
Learning Reinforcement Learning (wildml.com)
Deep Reinforcement Learning: Pong from Pixels (karpathy.github.io)
Generative Adversarial Networks (GANs)What’s a Generative Adversarial Network? (nvidia.com)
[Abusing Generative Adversarial Networks to Make 8-bit Pixel Art]75
An introduction to Generative Adversarial Networks (with code in TensorFlow) (aylien.com)
Generative Adversarial Networks for Beginners (oreilly.com)
Multi-task Learning[An Overview of Multi-Task Learning in Deep Neural Networks]78
NLPA Primer on Neural Network Models for Natural Language Processing (Yoav Goldberg)
The Definitive Guide to Natural Language Processing (monkeylearn.com)
Introduction to Natural Language Processing (algorithmia.com)
Natural Language Processing Tutorial (vikparuchuri.com)
Natural Language Processing (almost) from Scratch (arxiv.org)
Deep Learning and NLPDeep Learning applied to NLP (arxiv.org)
Deep Learning for NLP (without Magic) (Richard Socher)
Understanding Convolutional Neural Networks for NLP (wildml.com)
Deep Learning, NLP, and Representations (colah.github.io)
Embed, encode, attend, predict: The new deep learning formula for state-of-the-art NLP models (explosion.ai)
[Understanding Natural Language with Deep Neural Networks Using Torch]89
Deep Learning for NLP with Pytorch (pytorich.org)
Word VectorsBag of Words Meets Bags of Popcorn (kaggle.com)
On word embeddings Part I, Part II, Part III (sebastianruder.com)
The amazing power of word vectors (acolyer.org)
word2vec Parameter Learning Explained (arxiv.org)
Word2Vec Tutorial — The Skip-Gram Model, [Negative Sampling]98
Encoder-DecoderAttention and Memory in Deep Learning and NLP (wildml.com)
Sequence to Sequence Models (tensorflow.org)
Sequence to Sequence Learning with Neural Networks (NIPS 2014)
Machine Learning is Fun Part 5: Language Translation with Deep Learning and the Magic of Sequences (medium.com/@ageitgey)
[How to use an Encoder-Decoder LSTM to Echo Sequences of Random Integers]103
tf-seq2seq (google.github.io)
Python7 Steps to Mastering Machine Learning With Python (kdnuggets.com)
An example machine learning notebook (nbviewer.jupyter.org)
Examples[How To Implement The Perceptron Algorithm From Scratch In Python]107
Implementing a Neural Network from Scratch in Python (wildml.com)
A Neural Network in 11 lines of Python (iamtrask.github.io)
[Implementing Your Own k-Nearest Neighbour Algorithm Using Python]110
Demonstration of Memory with a Long Short-Term Memory Network in Python (machinelearningmastery.com)
How to Learn to Echo Random Integers with Long Short-Term Memory Recurrent Neural Networks (machinelearningmastery.com)
[How to Learn to Add Numbers with seq2seq Recurrent Neural Networks]113
Scipy and numpyScipy Lecture Notes (scipy-lectures.org)
Python Numpy Tutorial (Stanford CS231n)
An introduction to Numpy and Scipy (UCSB CHE210D)
A Crash Course in Python for Scientists (nbviewer.jupyter.org)
scikit-learnPyCon scikit-learn Tutorial Index (nbviewer.jupyter.org)
scikit-learn Classification Algorithms (github.com/mmmayo13)
scikit-learn Tutorials (scikit-learn.org)
Abridged scikit-learn Tutorials (github.com/mmmayo13)
TensorflowTensorflow Tutorials (tensorflow.org)
Introduction to TensorFlow — CPU vs GPU (medium.com/@erikhallstrm)
TensorFlow: A primer (metaflow.fr)
RNNs in Tensorflow (wildml.com)
Implementing a CNN for Text Classification in TensorFlow (wildml.com)
How to Run Text Summarization with TensorFlow (surmenok.com)
PyTorchPyTorch Tutorials (pytorch.org)
A Gentle Intro to PyTorch (gaurav.im)
Tutorial: Deep Learning in PyTorch (iamtrask.github.io)
PyTorch Examples (github.com/jcjohnson)
PyTorch Tutorial (github.com/MorvanZhou)
PyTorch Tutorial for Deep Learning Researchers (github.com/yunjey)
MathMath for Machine Learning (ucsc.edu)
Math for Machine Learning (UMIACS CMSC422)
Linear algebraAn Intuitive Guide to Linear Algebra (betterexplained.com)
A Programmer’s Intuition for Matrix Multiplication (betterexplained.com)
Understanding the Cross Product (betterexplained.com)
Understanding the Dot Product (betterexplained.com)
Linear Algebra for Machine Learning (U. of Buffalo CSE574)
Linear algebra cheat sheet for deep learning (medium.com)
Linear Algebra Review and Reference (Stanford CS229)
ProbabilityUnderstanding Bayes Theorem With Ratios (betterexplained.com)
Review of Probability Theory (Stanford CS229)
Probability Theory Review for Machine Learning (Stanford CS229)
Probability Theory (U. of Buffalo CSE574)
Probability Theory for Machine Learning (U. of Toronto CSC411)
CalculusHow To Understand Derivatives: The Quotient Rule, Exponents, and Logarithms (betterexplained.com)
[How To Understand Derivatives: The Product, Power & Chain Rules]150
Vector Calculus: Understanding the Gradient (betterexplained.com)
Differential Calculus (Stanford CS224n)
Calculus Overview (readthedocs.io)
作者:chen_h
微信号 & QQ:862251340
简书地址:http://www.jianshu.com/p/2be3...
CoderPai 是一个专注于算法实战的平台,从基础的算法到人工智能算法都有设计。如果你对算法实战感兴趣,请快快关注我们吧。加入AI实战微信群,AI实战QQ群,ACM算法微信群,ACM算法QQ群。长按或者扫描如下二维码,关注 “CoderPai” 微信号(coderpai)
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/41096.html
摘要:是你学习从入门到专家必备的学习路线和优质学习资源。的数学基础最主要是高等数学线性代数概率论与数理统计三门课程,这三门课程是本科必修的。其作为机器学习的入门和进阶资料非常适合。书籍介绍深度学习通常又被称为花书,深度学习领域最经典的畅销书。 showImg(https://segmentfault.com/img/remote/1460000019011569); 【导读】本文由知名开源平...
摘要:截止到今天,已公开发行一周年。一年以来,社区中的用户不断做出贡献和优化,在此深表感谢。所以与衡量它的指标包括在机器学习研究论文中的使用。来自香港科技大学的在上推出了面向普通观众的在线课程。 Yann LeCun Twitter截止到今天,PyTorch 已公开发行一周年。一年以来,我们致力于打造一个灵活的深度学习研究平台。一年以来,PyTorch 社区中的用户不断做出贡献和优化,在此深表感谢...
摘要:值得一提的是每篇文章都是我用心整理的,编者一贯坚持使用通俗形象的语言给我的读者朋友们讲解机器学习深度学习的各个知识点。今天,红色石头特此将以前所有的原创文章整理出来,组成一个比较合理完整的机器学习深度学习的学习路线图,希望能够帮助到大家。 一年多来,公众号【AI有道】已经发布了 140+ 的原创文章了。内容涉及林轩田机器学习课程笔记、吴恩达 deeplearning.ai 课程笔记、机...
阅读 2207·2021-11-17 09:33
阅读 2753·2021-11-12 10:36
阅读 3366·2021-09-27 13:47
阅读 855·2021-09-22 15:10
阅读 3452·2021-09-09 11:51
阅读 1348·2021-08-25 09:38
阅读 2733·2019-08-30 15:55
阅读 2573·2019-08-30 15:53