摘要:问题是什么能拿来干什么如何求解深入理解是什么混淆矩阵混淆矩阵是理解大多数评价指标的基础,毫无疑问也是理解的基础。内容的召回往往是根据的排序而决定的。
问题:
AUC是什么
AUC能拿来干什么
AUC如何求解(深入理解AUC)
AUC是什么 混淆矩阵(Confusion matrix)混淆矩阵是理解大多数评价指标的基础,毫无疑问也是理解AUC的基础。丰富的资料介绍着混淆矩阵的概念,这里用一个经典图来解释混淆矩阵是什么。
显然,混淆矩阵包含四部分的信息:
True negative(TN),称为真阴率,表明实际是负样本预测成负样本的样本数
False positive(FP),称为假阳率,表明实际是负样本预测成正样本的样本数
False negative(FN),称为假阴率,表明实际是正样本预测成负样本的样本数
True positive(TP),称为真阳率,表明实际是正样本预测成正样本的样本数
对照着混淆矩阵,很容易就能把关系、概念理清楚,但是久而久之,也很容易忘记概念。不妨我们按照位置前后分为两部分记忆,前面的部分是True/False表示真假,即代表着预测的正确性,后面的部分是positive/negative表示正负样本,即代表着预测的结果,所以,混淆矩阵即可表示为正确性-预测结果的集合。现在我们再来看上述四个部分的概念(均代表样本数,下述省略):
TN,预测是负样本,预测对了
FP,预测是正样本,预测错了
FN,预测是负样本,预测错了
TP,预测是正样本,预测对了
几乎我所知道的所有评价指标,都是建立在混淆矩阵基础上的,包括准确率、精准率、召回率、F1-score,当然也包括AUC。
ROC曲线事实上,要一下子弄清楚什么是AUC并不是那么容易,首先我们要从ROC曲线说起。对于某个二分类分类器来说,输出结果标签(0还是1)往往取决于输出的概率以及预定的概率阈值,比如常见的阈值就是0.5,大于0.5的认为是正样本,小于0.5的认为是负样本。如果增大这个阈值,预测错误(针对正样本而言,即指预测是正样本但是预测错误,下同)的概率就会降低但是随之而来的就是预测正确的概率也降低;如果减小这个阈值,那么预测正确的概率会升高但是同时预测错误的概率也会升高。实际上,这种阈值的选取也一定程度上反映了分类器的分类能力。我们当然希望无论选取多大的阈值,分类都能尽可能地正确,也就是希望该分类器的分类能力越强越好,一定程度上可以理解成一种鲁棒能力吧。
为了形象地衡量这种分类能力,ROC曲线横空出世!如下图所示,即为一条ROC曲线(该曲线的原始数据第三部分会介绍)。现在关心的是:
横轴:False Positive Rate(假阳率,FPR)
纵轴:True Positive Rate(真阳率,TPR)
假阳率,简单通俗来理解就是预测为正样本但是预测错了的可能性,显然,我们不希望该指标太高。
$$FPR=frac{FP}{TN+FP}$$
真阳率,则是代表预测为正样本但是预测对了的可能性,当然,我们希望真阳率越高越好。
$$TPR=frac{TP}{TP+FN}$$
显然,ROC曲线的横纵坐标都在[0,1]之间,自然ROC曲线的面积不大于1。现在我们来分析几个特殊情况,从而更好地掌握ROC曲线的性质:
(0,0):假阳率和真阳率都为0,即分类器全部预测成负样本
(0,1):假阳率为0,真阳率为1,全部完美预测正确,happy
(1,0):假阳率为1,真阳率为0,全部完美预测错误,悲剧
(1,1):假阳率和真阳率都为1,即分类器全部预测成正样本
TPR=FPR,斜对角线,预测为正样本的结果一半是对的,一半是错的,代表随机分类器的预测效果
于是,我们可以得到基本的结论:ROC曲线在斜对角线以下,则表示该分类器效果差于随机分类器,反之,效果好于随机分类器,当然,我们希望ROC曲线尽量除于斜对角线以上,也就是向左上角(0,1)凸。
AUC(Area under the ROC curve)ROC曲线一定程度上可以反映分类器的分类效果,但是不够直观,我们希望有这么一个指标,如果这个指标越大越好,越小越差,于是,就有了AUC。AUC实际上就是ROC曲线下的面积。AUC直观地反映了ROC曲线表达的分类能力。
AUC = 1,代表完美分类器
0.5 < AUC < 1,优于随机分类器
0 < AUC < 0.5,差于随机分类器
AUC能拿来干什么从作者有限的经历来说,AUC最大的应用应该就是点击率预估(CTR)的离线评估。CTR的离线评估在公司的技术流程中占有很重要的地位,一般来说,ABTest和转全观察的资源成本比较大,所以,一个合适的离线评价可以节省很多时间、人力、资源成本。那么,为什么AUC可以用来评价CTR呢?我们首先要清楚两个事情:
CTR是把分类器输出的概率当做是点击率的预估值,如业界常用的LR模型,利用sigmoid函数将特征输入与概率输出联系起来,这个输出的概率就是点击率的预估值。内容的召回往往是根据CTR的排序而决定的。
AUC量化了ROC曲线表达的分类能力。这种分类能力是与概率、阈值紧密相关的,分类能力越好(AUC越大),那么输出概率越合理,排序的结果越合理。
我们不仅希望分类器给出是否点击的分类信息,更需要分类器给出准确的概率值,作为排序的依据。所以,这里的AUC就直观地反映了CTR的准确性(也就是CTR的排序能力)
AUC如何求解步骤如下:
得到结果数据,数据结构为:(输出概率,标签真值)
对结果数据按输出概率进行分组,得到(输出概率,该输出概率下真实正样本数,该输出概率下真实负样本数)。这样做的好处是方便后面的分组统计、阈值划分统计等
对结果数据按输出概率进行从大到小排序
从大到小,把每一个输出概率作为分类阈值,统计该分类阈值下的TPR和FPR
微元法计算ROC曲线面积、绘制ROC曲线
代码如下所示:
import pylab as pl from math import log,exp,sqrt import itertools import operator def read_file(file_path, accuracy=2): db = [] #(score,nonclk,clk) pos, neg = 0, 0 #正负样本数量 #读取数据 with open(file_path,"r") as fs: for line in fs: temp = eval(line) #精度可控 #score = "%.1f" % float(temp[0]) score = float(temp[0]) trueLabel = int(temp[1]) sample = [score, 0, 1] if trueLabel == 1 else [score, 1, 0] score,nonclk,clk = sample pos += clk #正样本 neg += nonclk #负样本 db.append(sample) return db, pos, neg def get_roc(db, pos, neg): #按照输出概率,从大到小排序 db = sorted(db, key=lambda x:x[0], reverse=True) file=open("data.txt","w") file.write(str(db)) file.close() #计算ROC坐标点 xy_arr = [] tp, fp = 0., 0. for i in range(len(db)): tp += db[i][2] fp += db[i][1] xy_arr.append([fp/neg,tp/pos]) return xy_arr def get_AUC(xy_arr): #计算曲线下面积 auc = 0. prev_x = 0 for x,y in xy_arr: if x != prev_x: auc += (x - prev_x) * y prev_x = x return auc def draw_ROC(xy_arr): x = [_v[0] for _v in xy_arr] y = [_v[1] for _v in xy_arr] pl.title("ROC curve of %s (AUC = %.4f)" % ("clk",auc)) pl.xlabel("False Positive Rate") pl.ylabel("True Positive Rate") pl.plot(x, y)# use pylab to plot x and y pl.show()# show the plot on the screen
数据:提供的数据为每一个样本的(预测概率,真实标签)tuple
数据链接:https://pan.baidu.com/s/1c1FUzVM,密码1ax8
计算结果:AUC=0.747925810016,与Spark MLLib中的roc_AUC计算值基本吻合
当然,选择的概率精度越低,AUC计算的偏差就越大
ROC曲线反映了分类器的分类能力,结合考虑了分类器输出概率的准确性
AUC量化了ROC曲线的分类能力,越大分类效果越好,输出概率越合理
AUC常用作CTR的离线评价,AUC越大,CTR的排序能力越强
参考资料很多大牛对AUC都有自己的认识和理解,这里围绕和AUC的意义是什么,给出一些能帮助自己理解AUC的 大牛们的回答
[1]From 机器学习和统计里面的auc怎么理解?
[2]From 机器学习和统计里面的auc怎么理解?
[3]From 精确率、召回率、F1 值、ROC、AUC 各自的优缺点是什么?
[4]From 多高的AUC才算高?
其他一些参考资料:
利用Python画ROC曲线和AUC值计算
精确率与召回率,RoC曲线与PR曲线
ROC和AUC介绍以及如何计算AUC
基于混淆矩阵的评价指标
机器学习性能评估指标
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/40659.html
摘要:反映了分类器检测假负性的能力。我们将从混淆矩阵开始,这是表示分类结果的最简单方法。 作者:chen_h微信号 & QQ:862251340微信公众号:coderpai简书地址:https://www.jianshu.com/p/c28... 什么是分类模型? 分类是将每个数据集合中的元素分配给一个已知的数据类别。 那么分类都有哪些任务呢? 根据医生的病历记录,将检查者区分为健康或者...
阅读 2923·2023-04-26 01:52
阅读 3450·2021-09-04 16:40
阅读 3616·2021-08-31 09:41
阅读 1707·2021-08-09 13:41
阅读 471·2019-08-30 15:54
阅读 2910·2019-08-30 11:22
阅读 1585·2019-08-30 10:52
阅读 932·2019-08-29 13:24