摘要:当一个进行需要处理阻塞操作时,它会将这个任务交给线程池来完成。线程池配置如果你确信引入线程池对性能提升有效,那么咱们可以继续了解一些调优参数。这个错误表示这个线程池消费小于生产,所以可以增加队列长度,如果调整无效,说明系统达到了瓶颈。
五年级英语水平,端午家庭作业。
前言Nginx以异步、事件驱动的方式处理连接。传统的方式是每个请求新起一个进程或线程,Nginx没这样做,它通过非阻塞sockets、epoll、kqueue等高效手段,实现一个worker进程处理多个连接和请求。
一般情况下下是一个CPU内核对应一个worker进程,所以worker进程数量固定,并且不多,所以在任务切换上消耗的内存和CPU减少了。这种方式很不错,在高并发和扩展能力等方面都能体现。
看图说话,任务切换不见了。
但是异步事件模式很不喜欢阻塞(blocking)。很多第三方模块使用了阻塞模式的调用,有时候,用户乃至模块作者都不知道到阻塞调用会大大降低Nginx的性能。
Nginx自己的代码都有一些场景需要使用到阻塞,所以在1.7.11版本中,引入了新的“线程池”机制,在了解这个机制前,我们先瞅瞅阻塞。
问题了解阻塞前,先讲两句
Nginx其实就是一个事件处理器,接收内核发出的所有与connections相关的事件信息,然后告诉操作系统该做什么。操作系统如此复杂和底层,所以Nginx的指挥必须叼。
从上图看,有超时、sockets准备好读写、错误通知等事件。这些事件都放在一个队列中,Nginx对事件队列进行处理。
如果一个事件对于到的操作非常耗时,那么整个队列的处理就会延迟。
“阻塞操作”就是这样一个导致队列处理延迟的什么鬼。举个例子,CPU密集型计算,资源访问(硬盘、mutex、同步访问数据库等等)。发生阻塞时,worker进程只能等待。
就跟过安检时一样,如果你的队伍里面有个小朋友带了一大瓶AD钙奶,那你只有等他喝完。
有些系统提供的异步文件接口,例如FreeBSD。Linux也提供了类似机制,但是不太好用。首先它要求文件或缓存是扇区对齐的,好吧,Nginx能做到。其次更苛刻的一点是,它要求文件设置O_DIRECT标志位,这就是说,所有访问这个文件的操作都是直接读取,不走任何缓存,这样反而会增加磁盘IO负担。
问了解决这些问题,1.7.11版本中引入了线程池。
线程池你家楼下的顺丰快递就是一个线程池,不用每次寄快递都要去顺丰总部,狗屎一样的比喻。。
对Nginx来说,线程池的作用跟快递点一样。它包括一个任务队列以及配套线程。当一个worker进行需要处理阻塞操作时,它会将这个任务交给线程池来完成。
这里引入了一个新的队列,在例子中,这个队列因为读取资源导致缓慢,读取硬盘虽然慢,至少它不会影响事件队列的继续处理。
任何阻塞操作都可以放到线程池中。目前,我们只尝试了两个核心操作:主流操作系统的read()系统调用和Linux上的sendfile()。后续经过性能测试会考虑纳入更多的操作。
性能测试为了证实上述理论,进行了如下测试,测试场景包括各种阻塞操作和非阻塞操作。
我们在一台48G内存的机器上生成了总共256的随机文件,每个文件大小为4MB。这样做的目的是保证数据不受内存缓存影响。
简单的配置如下:
worker_processes 16; events { accept_mutex off; } http { include mime.types; default_type application/octet-stream; access_log off; sendfile on; sendfile_max_chunk 512k; server { listen 8000; location / { root /storage; } } }
配置中进行了一些调优:禁用logging和accpet_mutex,启用sendfile并设置sendfile_max_chunk,有利于减少阻塞调用sendfile时带来的总时间。
测试机器配置为双Intel至强E5645(共12核-24线程),10G网卡,四块西数1003FBYX组成的RAID10,系统为Ubuntu Server 14.04.1 LTS。
两台配置一样的客户端,一台机器通过Lua和wrk随机产生200个并发请求,每个请求都不会命中缓存,所以Nginx处理时会产生读盘阻塞操作。另一台机器则是产生50个并发请求,每个请求读取固定文件,频繁的文件读取会命中缓存,所以一般情况下此类请求处理速度较快,当worker进程阻塞时请求速度会受影响。
通过ifstat和在第二台机器上wrk来监控系统吞吐性能。
无线程池结果
% ifstat -bi eth2 eth2 Kbps in Kbps out 5531.24 1.03e+06 4855.23 812922.7 5994.66 1.07e+06 5476.27 981529.3 6353.62 1.12e+06 5166.17 892770.3 5522.81 978540.8 6208.10 985466.7 6370.79 1.12e+06 6123.33 1.07e+06
吞吐量大约是1Gbps,从top看,所有的worker进程主要消耗在阻塞I/O上(top中的D状态)
top - 10:40:47 up 11 days, 1:32, 1 user, load average: 49.61, 45.77 62.89 Tasks: 375 total, 2 running, 373 sleeping, 0 stopped, 0 zombie %Cpu(s): 0.0 us, 0.3 sy, 0.0 ni, 67.7 id, 31.9 wa, 0.0 hi, 0.0 si, 0.0 st KiB Mem: 49453440 total, 49149308 used, 304132 free, 98780 buffers KiB Swap: 10474236 total, 20124 used, 10454112 free, 46903412 cached Mem PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 4639 vbart 20 0 47180 28152 496 D 0.7 0.1 0:00.17 nginx 4632 vbart 20 0 47180 28196 536 D 0.3 0.1 0:00.11 nginx 4633 vbart 20 0 47180 28324 540 D 0.3 0.1 0:00.11 nginx 4635 vbart 20 0 47180 28136 480 D 0.3 0.1 0:00.12 nginx 4636 vbart 20 0 47180 28208 536 D 0.3 0.1 0:00.14 nginx 4637 vbart 20 0 47180 28208 536 D 0.3 0.1 0:00.10 nginx 4638 vbart 20 0 47180 28204 536 D 0.3 0.1 0:00.12 nginx 4640 vbart 20 0 47180 28324 540 D 0.3 0.1 0:00.13 nginx 4641 vbart 20 0 47180 28324 540 D 0.3 0.1 0:00.13 nginx 4642 vbart 20 0 47180 28208 536 D 0.3 0.1 0:00.11 nginx 4643 vbart 20 0 47180 28276 536 D 0.3 0.1 0:00.29 nginx 4644 vbart 20 0 47180 28204 536 D 0.3 0.1 0:00.11 nginx 4645 vbart 20 0 47180 28204 536 D 0.3 0.1 0:00.17 nginx 4646 vbart 20 0 47180 28204 536 D 0.3 0.1 0:00.12 nginx 4647 vbart 20 0 47180 28208 532 D 0.3 0.1 0:00.17 nginx 4631 vbart 20 0 47180 756 252 S 0.0 0.1 0:00.00 nginx 4634 vbart 20 0 47180 28208 536 D 0.0 0.1 0:00.11 nginx 4648 vbart 20 0 25232 1956 1160 R 0.0 0.0 0:00.08 top 25921 vbart 20 0 121956 2232 1056 S 0.0 0.0 0:01.97 sshd 25923 vbart 20 0 40304 4160 2208 S 0.0 0.0 0:00.53 zsh
IO受磁盘限制,CPU多数处于空闲状态。wrk结果表明性能也较低。
Running 1m test @ http://192.0.2.1:8000/1/1/1 12 threads and 50 connections Thread Stats Avg Stdev Max +/- Stdev Latency 7.42s 5.31s 24.41s 74.73% Req/Sec 0.15 0.36 1.00 84.62% 488 requests in 1.01m, 2.01GB read Requests/sec: 8.08 Transfer/sec: 34.07MB
需要提醒的是,这些请求原本是应该命中缓存非常快速的,但是因为worker进程受第一台服务器的200并发影响,所以最终比较慢。
接下来对照线程池实验,在location配置中添加一个aio线程指令
location / { root /storage; aio threads; }
重新加载Nginx配置后,重复上述测试
% ifstat -bi eth2 eth2 Kbps in Kbps out 60915.19 9.51e+06 59978.89 9.51e+06 60122.38 9.51e+06 61179.06 9.51e+06 61798.40 9.51e+06 57072.97 9.50e+06 56072.61 9.51e+06 61279.63 9.51e+06 61243.54 9.51e+06 59632.50 9.50e+06
哇,产生了9.5Gbps的吞吐性能。
性能没准还能更改,因为已经达到了网卡瓶颈。这次,worker进程主要消耗在sleeping和时间等待上(top中的S状态)。
top - 10:43:17 up 11 days, 1:35, 1 user, load average: 172.71, 93.84, 77.90 Tasks: 376 total, 1 running, 375 sleeping, 0 stopped, 0 zombie %Cpu(s): 0.2 us, 1.2 sy, 0.0 ni, 34.8 id, 61.5 wa, 0.0 hi, 2.3 si, 0.0 st KiB Mem: 49453440 total, 49096836 used, 356604 free, 97236 buffers KiB Swap: 10474236 total, 22860 used, 10451376 free, 46836580 cached Mem PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 4654 vbart 20 0 309708 28844 596 S 9.0 0.1 0:08.65 nginx 4660 vbart 20 0 309748 28920 596 S 6.6 0.1 0:14.82 nginx 4658 vbart 20 0 309452 28424 520 S 4.3 0.1 0:01.40 nginx 4663 vbart 20 0 309452 28476 572 S 4.3 0.1 0:01.32 nginx 4667 vbart 20 0 309584 28712 588 S 3.7 0.1 0:05.19 nginx 4656 vbart 20 0 309452 28476 572 S 3.3 0.1 0:01.84 nginx 4664 vbart 20 0 309452 28428 524 S 3.3 0.1 0:01.29 nginx 4652 vbart 20 0 309452 28476 572 S 3.0 0.1 0:01.46 nginx 4662 vbart 20 0 309552 28700 596 S 2.7 0.1 0:05.92 nginx 4661 vbart 20 0 309464 28636 596 S 2.3 0.1 0:01.59 nginx 4653 vbart 20 0 309452 28476 572 S 1.7 0.1 0:01.70 nginx 4666 vbart 20 0 309452 28428 524 S 1.3 0.1 0:01.63 nginx 4657 vbart 20 0 309584 28696 592 S 1.0 0.1 0:00.64 nginx 4655 vbart 20 0 30958 28476 572 S 0.7 0.1 0:02.81 nginx 4659 vbart 20 0 309452 28468 564 S 0.3 0.1 0:01.20 nginx 4665 vbart 20 0 309452 28476 572 S 0.3 0.1 0:00.71 nginx 5180 vbart 20 0 25232 1952 1156 R 0.0 0.0 0:00.45 top 4651 vbart 20 0 20032 752 252 S 0.0 0.0 0:00.00 nginx 25921 vbart 20 0 121956 2176 1000 S 0.0 0.0 0:01.98 sshd 25923 vbart 20 0 40304 3840 2208 S 0.0 0.0 0:00.54 zsh
就是说,CPU还是很富裕。
wrk的结果相差无几
Running 1m test @ http://192.0.2.1:8000/1/1/1 12 threads and 50 connections Thread Stats Avg Stdev Max +/- Stdev Latency 226.32ms 392.76ms 1.72s 93.48% Req/Sec 20.02 10.84 59.00 65.91% 15045 requests in 1.00m, 58.86GB read Requests/sec: 250.57 Transfer/sec: 0.98GB
4MB文件的请求时间从7.41秒提升至了226.32毫秒(约33倍),QPS提升了大约31倍(250比8)。
提升的原因不再赘述,大约就是事件队列没有受阻罢了。
不是万灵丹看到这里,是不是立马就想去修改你的生产环境了,且慢。
事实上,绝大多数的read和sendfile都是在缓存页中进行的,操作系统会把频繁使用的文件放在缓存页中。
当你的数据量较小,并且内存足够大时,Nginx已经是处于最佳状态了,开线程池反倒会引入开销。线程池能够良好应对的一个场景,是数据无法被完全缓存,例如流媒体服务器,我们上面的测试环境,就是模拟的流媒体服务。
能否用线程池来提升读操作的性能呢?唯一需要做的,就是能有效区分哪些文件已经被缓存,哪些文件未缓存。
咱们的系统没有提供这样的信息。早在2010年Linux尝试通过fincore()来实现未果。接下来是preadv2()和RWF_NONBLOCK标志位方式,可惜也不好用,具体可以参考内核bikeshedding一文。
哈哈,至少FreeBSD用户可以先喝咖啡了,无需在线程池问题上伤脑筋。
线程池配置如果你确信引入线程池对性能提升有效,那么咱们可以继续了解一些调优参数。
这些调优都是基于1.7.11+ 版本,编译选项为--with-threads参数。最简单的场景下,仅需在http、server或location区块配置aio thread参数即可
aio threads;
它对应的完整配置是
thread_pool default threads=32 max_queue=65536; aio threads=default;
默认情况下包括一个32个线程的线程池,长度为65536的请求队列。如果队列溢出,Nginx会输出如下错误并拒绝请求。
thread pool "NAME" queue overflow: N tasks waiting
这个错误表示这个线程池消费小于生产,所以可以增加队列长度,如果调整无效,说明系统达到了瓶颈。
另外,我们可以调整线程相关的参数,例如对不同场景,可以提供独立的线程池。
http { thread_pool one threads=128 max_queue=0; thread_pool two threads=32; server { location /one { aio threads=one; } location /two { aio threads=two; } } … }
在未定义max_queue时默认为65536,当设置成0时,服务能力等同线程数量。
假如你的缓存代理服务器有3块磁盘,内存不能放下预期需要缓存的文件,所以我们首先需要让磁盘工作最大化。
一个方式是RAID,好坏兼并。另一个方式是Nginx
# We assume that each of the hard drives is mounted on one of the directories: # /mnt/disk1, /mnt/disk2, or /mnt/disk3 accordingly proxy_cache_path /mnt/disk1 levels=1:2 keys_zone=cache_1:256m max_size=1024G use_temp_path=off; proxy_cache_path /mnt/disk2 levels=1:2 keys_zone=cache_2:256m max_size=1024G use_temp_path=off; proxy_cache_path /mnt/disk3 levels=1:2 keys_zone=cache_3:256m max_size=1024G use_temp_path=off; thread_pool pool_1 threads=16; thread_pool pool_2 threads=16; thread_pool pool_3 threads=16; split_clients $request_uri $disk { 33.3% 1; 33.3% 2; * 3; } location / { proxy_pass http://backend; proxy_cache_key $request_uri; proxy_cache cache_$disk; aio threads=pool_$disk; sendfile on; }
使用了3个独立的缓存,每个缓存指定到一块磁盘,然后有3个独立的线程池。
split_clients模块用于缓存间的负载均衡。
use_temp_path=off参数让Nginx将缓存文件保存至文件同级目录,可以避免缓存更新时磁盘间的文件数据交换。
结论明天他妈又要上课了
原文地址:http://nginx.com/blog/thread-pools-boost-performance-9x/
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/39170.html
摘要:将订单传递给运送服务从而解除阻塞队列在方面,线程池正在执行运送服务的功能。我们将继续测试和评估,如果有明显的好处,我们可能会在未来的版本中将其他操作也提交到线程池。 在nginx的官网看到一篇介绍nginx原理的文章,这篇文章比较老了是15年发布的,国内有人翻译过但是有些小瑕疵,这里更正出来发布在我个人的文章里供大家参考,这篇文章详细的介绍了nginx线程池的原理以及设计思路,在最后通...
摘要:为每个依赖提供一个小的线程池或信号,如果线程池已满调用将被立即拒绝,默认不采用排队加速失败判定时间。 最近小主看到很多公众号都在发布Hystrix停更的文章,spring cloud体系的使用者和拥护者一片哀嚎,实际上,spring作为Java最大的家族,根本不需要担心其中一两个零件的废弃,Hystrix的停更,只会催生更多或者更好的零件来替代它,因此,我们需要做的是:**知道Hyst...
摘要:快杰云主机最新一代快杰云主机,整体计算性能提升内网包量最高可达万单个支持最大外网带宽存储性能最高可达万,延迟低至。凭借强大的性能,快杰云主机为海量数据运算高性能数据库高并发网络集群等场景带来新一轮的创新性体验。 随着5G网络、大数据、人工智能、物联网等技术的快速发展,数据增长进入了空前的规模。如何实现海量数据的存储、分析、交互,真正发挥数据的价值,已经成为企业新的挑战,而算力就是其中最先需...
摘要:关于过程中如何细节控制一致性,稳定性,信号控制,控制等等,敬请期待小拽的进一步探索处理流程和模块启动进程后,请求在内部是如何流转的,内部包括哪些模块处理过程请求到达后首先读取,中初始时间便从此开始。 由于性能问题,需要将 apache + php5.2 升级到 nginx + php7,对于nginx的性能和热加载早有耳闻,why nginx so diao。小拽进行了初探,有任何疑问...
摘要:第一阶段基础阶段基础程序员重点把搞熟练核心是安装配置基本操作目标能够完成基本的系统安装,简单配置维护能够做基本的简单系统的开发能够在中型系统中支持某个功能模块的开发。本项不做重点学习,除非对前端有兴趣。 第一阶段:基础阶段(基础PHP程序员) 重点:把LNMP搞熟练(核心是安装配置基本操作) 目标:能够完成基本的LNMP系统安装,简单配置维护;能够做基本的简单系统的PHP开发;能够在P...
阅读 1748·2023-04-26 01:41
阅读 3049·2021-11-23 09:51
阅读 2713·2021-10-09 09:43
阅读 8881·2021-09-22 15:13
阅读 2436·2021-09-07 09:59
阅读 2604·2019-08-30 15:44
阅读 1094·2019-08-30 12:45
阅读 2589·2019-08-30 12:43