摘要:最近在抽时间学习这个库的使用,学的断断续续的,看官网上第一个案例就是训练手写字符识别。此外,还需要有个,用来把训练的标签和实际的标签对应,比如说对应字母,对应字母。然后使用的函数,把训练集和测试集分开。
最近在抽时间学习TensorFlow这个DL库的使用,学的断断续续的,看官网上第一个案例就是训练手写字符识别。我之前在做Weibo.cn验证码识别的时候,自己搞了一个数据集,当时用的c++库tiny-dnn进行训练的(见:验证码破解技术四部曲之使用卷积神经网络(四)),现在我把它移植到TensorFlow上试试。
完整代码见:weibo.cn/tensorflow-impl
使用的库TensorFlow-1.0
scikit-learn-0.18
pillow
加载数据集数据集下载地址:training_set.zip
解压过后如下图:
我把同一类的图片放到了一个文件夹里,文件夹的名字也就是图片的label,打开文件夹后可以看到字符的图片信息。
下面,我们把数据加载到一个pickle文件里面,它需要有train_dataset、train_labels、test_dataset、test_labels四个变量代表训练集和测试集的数据和标签。
此外,还需要有个label_map,用来把训练的标签和实际的标签对应,比如说3对应字母M,4对应字母N。
此部分的代码见:load_models.py。注:很多的代码参考自udacity的deeplearning课程。
首先根据文件夹的来加载所有的数据,index代表训练里的标签,label代表实际的标签,使用PIL读取图片,并转换成numpy数组。
import numpy as np import os from PIL import Image def load_dataset(): dataset = [] labelset = [] label_map = {} base_dir = "../trainer/training_set/" # 数据集的位置 labels = os.listdir(base_dir) for index, label in enumerate(labels): if label == "ERROR" or label == ".DS_Store": continue print "loading:", label, "index:", index try: image_files = os.listdir(base_dir + label) for image_file in image_files: image_path = base_dir + label + "/" + image_file im = Image.open(image_path).convert("L") dataset.append(np.asarray(im, dtype=np.float32)) labelset.append(index) label_map[index] = label except: pass return np.array(dataset), np.array(labelset), label_map dataset, labelset, label_map = load_dataset()
接下来,把数据打乱。
def randomize(dataset, labels): permutation = np.random.permutation(labels.shape[0]) shuffled_dataset = dataset[permutation, :, :] shuffled_labels = labels[permutation] return shuffled_dataset, shuffled_labels dataset, labelset = randomize(dataset, labelset)
然后使用scikit-learn的函数,把训练集和测试集分开。
from sklearn.model_selection import train_test_split train_dataset, test_dataset, train_labels, test_labels = train_test_split(dataset, labelset)
在TensorFlow官网给的例子中,会把label进行One-Hot Encoding,并把28*28的图片转换成了一维向量(784)。如下图,查看官网例子的模型。
我也把数据转换了一下,把32*32的图片转换成一维向量(1024),并对标签进行One-Hot Encoding。
def reformat(dataset, labels, image_size, num_labels): dataset = dataset.reshape((-1, image_size * image_size)).astype(np.float32) # Map 1 to [0.0, 1.0, 0.0 ...], 2 to [0.0, 0.0, 1.0 ...] labels = (np.arange(num_labels) == labels[:, None]).astype(np.float32) return dataset, labels train_dataset, train_labels = reformat(train_dataset, train_labels, 32, len(label_map)) test_dataset, test_labels = reformat(test_dataset, test_labels, 32, len(label_map)) print "train_dataset:", train_dataset.shape print "train_labels:", train_labels.shape print "test_dataset:", test_dataset.shape print "test_labels:", test_labels.shape
转换后,格式就和minist一样了。
最后,把数据保存到save.pickle里面。
save = { "train_dataset": train_dataset, "train_labels": train_labels, "test_dataset": test_dataset, "test_labels": test_labels, "label_map": label_map } with open("save.pickle", "wb") as f: pickle.dump(save, f)验证数据集加载是否正确
加载完数据后,需要验证一下数据是否正确。我选择的方法很简单,就是把trainset的第1个(或者第2个、第n个)图片打开,看看它的标签和看到的能不能对上。
import cPickle as pickle from PIL import Image import numpy as np def check_dataset(dataset, labels, label_map, index): data = np.uint8(dataset[index]).reshape((32, 32)) i = np.argwhere(labels[index] == 1)[0][0] im = Image.fromarray(data) im.show() print "label:", label_map[i] if __name__ == "__main__": with open("save.pickle", "rb") as f: save = pickle.load(f) train_dataset = save["train_dataset"] train_labels = save["train_labels"] test_dataset = save["test_dataset"] test_labels = save["test_labels"] label_map = save["label_map"] # check if the image is corresponding to it"s label check_dataset(train_dataset, train_labels, label_map, 0)
运行后,可以看到第一张图片是Y,标签也是正确的。
数据加载好了之后,就可以开始训练了,训练的网络就使用TensorFlow官网在Deep MNIST for Experts里提供的就好了。
此部分的代码见:train.py。
先加载一下模型:
import cPickle as pickle import numpy as np import tensorflow as tf with open("save.pickle", "rb") as f: save = pickle.load(f) train_dataset = save["train_dataset"] train_labels = save["train_labels"] test_dataset = save["test_dataset"] test_labels = save["test_labels"] label_map = save["label_map"] image_size = 32 num_labels = len(label_map) print "train_dataset:", train_dataset.shape print "train_labels:", train_labels.shape print "test_dataset:", test_dataset.shape print "test_labels:", test_labels.shape print "num_labels:", num_labels
minist的数据都是28*28的,把里面的网络改完了之后,如下:
def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding="SAME") def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME") graph = tf.Graph() with graph.as_default(): x = tf.placeholder(tf.float32, shape=[None, image_size * image_size]) y_ = tf.placeholder(tf.float32, shape=[None, num_labels]) x_image = tf.reshape(x, [-1, 32, 32, 1]) # First Convolutional Layer W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) # Second Convolutional Layer W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) # Densely Connected Layer W_fc1 = weight_variable([image_size / 4 * image_size / 4 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, image_size / 4 * image_size / 4 * 64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) # Dropout keep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # Readout Layer W_fc2 = weight_variable([1024, num_labels]) b_fc2 = bias_variable([num_labels]) y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 cross_entropy = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
主要改动就是输入层把28*28改成了image_size*image_size(32*32),然后第三层的全连接网络把7*7改成了image_size/4*image_size/4(8*8),以及把10(手写字符一共10类)改成了num_labels。
然后训练,我这里把batch_size改成了128,训练批次改少了。
batch_size = 128 with tf.Session(graph=graph) as session: tf.global_variables_initializer().run() print("Initialized") for step in range(2001): offset = (step * batch_size) % (train_labels.shape[0] - batch_size) # Generate a minibatch. batch_data = train_dataset[offset:(offset + batch_size), :] batch_labels = train_labels[offset:(offset + batch_size), :] if step % 50 == 0: train_accuracy = accuracy.eval(feed_dict={ x: batch_data, y_: batch_labels, keep_prob: 1.0}) test_accuracy = accuracy.eval(feed_dict={ x: test_dataset, y_: test_labels, keep_prob: 1.0}) print("Step %d, Training accuracy: %g, Test accuracy: %g" % (step, train_accuracy, test_accuracy)) train_step.run(feed_dict={x: batch_data, y_: batch_labels, keep_prob: 0.5}) print("Test accuracy: %g" % accuracy.eval(feed_dict={ x: test_dataset, y_: test_labels, keep_prob: 1.0}))
运行,可以看到识别率在不断的上升。
最后,有了接近98%的识别率,只有4000个训练数据,感觉不错了。
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/38574.html
阅读 978·2021-11-22 09:34
阅读 2162·2021-11-11 16:54
阅读 2199·2021-09-27 14:00
阅读 942·2019-08-30 15:55
阅读 1526·2019-08-29 12:46
阅读 601·2019-08-26 18:42
阅读 641·2019-08-26 13:31
阅读 3184·2019-08-26 11:52