摘要:本系列的其他文章已经根据的官方教程基于数据集采用了和进行建模。为了完整性,本文对数据应用模型求解,具体使用的为。
前言
本文输入数据是MNIST,全称是Modified National Institute of Standards and Technology,是一组由这个机构搜集的手写数字扫描文件和每个文件对应标签的数据集,经过一定的修改使其适合机器学习算法读取。这个数据集可以从牛的不行的Yann LeCun教授的网站获取。
本系列的其他文章已经根据TensorFlow的官方教程基于MNIST数据集采用了softmax regression和CNN进行建模。为了完整性,本文对MNIST数据应用RNN模型求解,具体使用的RNN为LSTM。
关于RNN/LSTM的理论知识,可以参考这篇文章
代码# coding: utf-8 # @author: 陈水平 # @date:2017-02-14 # # In[1]: import tensorflow as tf import numpy as np # In[2]: sess = tf.InteractiveSession() # In[3]: from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("mnist/", one_hot=True) # In[4]: learning_rate = 0.001 batch_size = 128 n_input = 28 n_steps = 28 n_hidden = 128 n_classes = 10 x = tf.placeholder(tf.float32, [None, n_steps, n_input]) y = tf.placeholder(tf.float32, [None, n_classes]) # In[5]: def RNN(x, weight, biases): # x shape: (batch_size, n_steps, n_input) # desired shape: list of n_steps with element shape (batch_size, n_input) x = tf.transpose(x, [1, 0, 2]) x = tf.reshape(x, [-1, n_input]) x = tf.split(0, n_steps, x) outputs = list() lstm = tf.nn.rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0) state = (tf.zeros([n_steps, n_hidden]),)*2 sess.run(state) with tf.variable_scope("myrnn2") as scope: for i in range(n_steps-1): if i > 0: scope.reuse_variables() output, state = lstm(x[i], state) outputs.append(output) final = tf.matmul(outputs[-1], weight) + biases return final # In[6]: def RNN(x, n_steps, n_input, n_hidden, n_classes): # Parameters: # Input gate: input, previous output, and bias ix = tf.Variable(tf.truncated_normal([n_input, n_hidden], -0.1, 0.1)) im = tf.Variable(tf.truncated_normal([n_hidden, n_hidden], -0.1, 0.1)) ib = tf.Variable(tf.zeros([1, n_hidden])) # Forget gate: input, previous output, and bias fx = tf.Variable(tf.truncated_normal([n_input, n_hidden], -0.1, 0.1)) fm = tf.Variable(tf.truncated_normal([n_hidden, n_hidden], -0.1, 0.1)) fb = tf.Variable(tf.zeros([1, n_hidden])) # Memory cell: input, state, and bias cx = tf.Variable(tf.truncated_normal([n_input, n_hidden], -0.1, 0.1)) cm = tf.Variable(tf.truncated_normal([n_hidden, n_hidden], -0.1, 0.1)) cb = tf.Variable(tf.zeros([1, n_hidden])) # Output gate: input, previous output, and bias ox = tf.Variable(tf.truncated_normal([n_input, n_hidden], -0.1, 0.1)) om = tf.Variable(tf.truncated_normal([n_hidden, n_hidden], -0.1, 0.1)) ob = tf.Variable(tf.zeros([1, n_hidden])) # Classifier weights and biases w = tf.Variable(tf.truncated_normal([n_hidden, n_classes])) b = tf.Variable(tf.zeros([n_classes])) # Definition of the cell computation def lstm_cell(i, o, state): input_gate = tf.sigmoid(tf.matmul(i, ix) + tf.matmul(o, im) + ib) forget_gate = tf.sigmoid(tf.matmul(i, fx) + tf.matmul(o, fm) + fb) update = tf.tanh(tf.matmul(i, cx) + tf.matmul(o, cm) + cb) state = forget_gate * state + input_gate * update output_gate = tf.sigmoid(tf.matmul(i, ox) + tf.matmul(o, om) + ob) return output_gate * tf.tanh(state), state # Unrolled LSTM loop outputs = list() state = tf.Variable(tf.zeros([batch_size, n_hidden])) output = tf.Variable(tf.zeros([batch_size, n_hidden])) # x shape: (batch_size, n_steps, n_input) # desired shape: list of n_steps with element shape (batch_size, n_input) x = tf.transpose(x, [1, 0, 2]) x = tf.reshape(x, [-1, n_input]) x = tf.split(0, n_steps, x) for i in x: output, state = lstm_cell(i, output, state) outputs.append(output) logits =tf.matmul(outputs[-1], w) + b return logits # In[7]: pred = RNN(x, n_steps, n_input, n_hidden, n_classes) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) # Initializing the variables init = tf.global_variables_initializer() # In[8]: # Launch the graph sess.run(init) for step in range(20000): batch_x, batch_y = mnist.train.next_batch(batch_size) batch_x = batch_x.reshape((batch_size, n_steps, n_input)) sess.run(optimizer, feed_dict={x: batch_x, y: batch_y}) if step % 50 == 0: acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y}) loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y}) print "Iter " + str(step) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc) print "Optimization Finished!" # In[9]: # Calculate accuracy for 128 mnist test images test_len = batch_size test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input)) test_label = mnist.test.labels[:test_len] print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label})
输出如下:
Iter 0, Minibatch Loss= 2.540429, Training Accuracy= 0.07812 Iter 50, Minibatch Loss= 2.423611, Training Accuracy= 0.06250 Iter 100, Minibatch Loss= 2.318830, Training Accuracy= 0.13281 Iter 150, Minibatch Loss= 2.276640, Training Accuracy= 0.13281 Iter 200, Minibatch Loss= 2.276727, Training Accuracy= 0.12500 Iter 250, Minibatch Loss= 2.267064, Training Accuracy= 0.16406 Iter 300, Minibatch Loss= 2.234139, Training Accuracy= 0.19531 Iter 350, Minibatch Loss= 2.295060, Training Accuracy= 0.12500 Iter 400, Minibatch Loss= 2.261856, Training Accuracy= 0.16406 Iter 450, Minibatch Loss= 2.220284, Training Accuracy= 0.17969 Iter 500, Minibatch Loss= 2.276015, Training Accuracy= 0.13281 Iter 550, Minibatch Loss= 2.220499, Training Accuracy= 0.14062 Iter 600, Minibatch Loss= 2.219574, Training Accuracy= 0.11719 Iter 650, Minibatch Loss= 2.189177, Training Accuracy= 0.25781 Iter 700, Minibatch Loss= 2.195167, Training Accuracy= 0.19531 Iter 750, Minibatch Loss= 2.226459, Training Accuracy= 0.18750 Iter 800, Minibatch Loss= 2.148620, Training Accuracy= 0.23438 Iter 850, Minibatch Loss= 2.122925, Training Accuracy= 0.21875 Iter 900, Minibatch Loss= 2.065122, Training Accuracy= 0.24219 ... Iter 19350, Minibatch Loss= 0.001304, Training Accuracy= 1.00000 Iter 19400, Minibatch Loss= 0.000144, Training Accuracy= 1.00000 Iter 19450, Minibatch Loss= 0.000907, Training Accuracy= 1.00000 Iter 19500, Minibatch Loss= 0.002555, Training Accuracy= 1.00000 Iter 19550, Minibatch Loss= 0.002018, Training Accuracy= 1.00000 Iter 19600, Minibatch Loss= 0.000853, Training Accuracy= 1.00000 Iter 19650, Minibatch Loss= 0.001035, Training Accuracy= 1.00000 Iter 19700, Minibatch Loss= 0.007034, Training Accuracy= 0.99219 Iter 19750, Minibatch Loss= 0.000608, Training Accuracy= 1.00000 Iter 19800, Minibatch Loss= 0.002913, Training Accuracy= 1.00000 Iter 19850, Minibatch Loss= 0.003484, Training Accuracy= 1.00000 Iter 19900, Minibatch Loss= 0.005693, Training Accuracy= 1.00000 Iter 19950, Minibatch Loss= 0.001904, Training Accuracy= 1.00000 Optimization Finished! Testing Accuracy: 0.992188
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/38428.html
摘要:的卷积神经网络应用卷积神经网络的概念卷积神经网络是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。 MNIST的卷积神经网络应用 卷积神经网络的概念 卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。[2] 它...
摘要:相比于直接使用搭建卷积神经网络,将作为高级,并使用作为后端要简单地多。测试一学习模型的类型卷积神经网络数据集任务小图片数据集目标将图片分类为个类别根据每一个的训练速度,要比快那么一点点。 如果我们对 Keras 在数据科学和深度学习方面的流行还有疑问,那么考虑一下所有的主流云平台和深度学习框架的支持情况就能发现它的强大之处。目前,Keras 官方版已经支持谷歌的 TensorFlow、微软的...
阅读 2093·2021-11-02 14:48
阅读 2770·2019-08-30 14:19
阅读 2939·2019-08-30 13:19
阅读 1306·2019-08-29 16:17
阅读 3244·2019-08-26 14:05
阅读 2997·2019-08-26 13:58
阅读 3085·2019-08-23 18:10
阅读 1112·2019-08-23 18:04