摘要:前言本文使用训练逻辑回归模型,并将其与做比较。对数极大似然估计方法的目标函数是最大化所有样本的发生概率机器学习习惯将目标函数称为损失,所以将损失定义为对数似然的相反数,以转化为极小值问题。
前言
本文使用tensorflow训练逻辑回归模型,并将其与scikit-learn做比较。数据集来自Andrew Ng的网上公开课程Deep Learning
代码#!/usr/bin/env python # -*- coding=utf-8 -*- # @author: 陈水平 # @date: 2017-01-04 # @description: compare the logistics regression of tensorflow with sklearn based on the exercise of deep learning course of Andrew Ng. # @ref: http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex4/ex4.html import tensorflow as tf import numpy as np from sklearn.linear_model import LogisticRegression from sklearn import preprocessing # Read x and y x_data = np.loadtxt("ex4x.dat").astype(np.float32) y_data = np.loadtxt("ex4y.dat").astype(np.float32) scaler = preprocessing.StandardScaler().fit(x_data) x_data_standard = scaler.transform(x_data) # We evaluate the x and y by sklearn to get a sense of the coefficients. reg = LogisticRegression(C=999999999, solver="newton-cg") # Set C as a large positive number to minimize the regularization effect reg.fit(x_data, y_data) print "Coefficients of sklearn: K=%s, b=%f" % (reg.coef_, reg.intercept_) # Now we use tensorflow to get similar results. W = tf.Variable(tf.zeros([2, 1])) b = tf.Variable(tf.zeros([1, 1])) y = 1 / (1 + tf.exp(-tf.matmul(x_data_standard, W) + b)) loss = tf.reduce_mean(- y_data.reshape(-1, 1) * tf.log(y) - (1 - y_data.reshape(-1, 1)) * tf.log(1 - y)) optimizer = tf.train.GradientDescentOptimizer(1.3) train = optimizer.minimize(loss) init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) for step in range(100): sess.run(train) if step % 10 == 0: print step, sess.run(W).flatten(), sess.run(b).flatten() print "Coefficients of tensorflow (input should be standardized): K=%s, b=%s" % (sess.run(W).flatten(), sess.run(b).flatten()) print "Coefficients of tensorflow (raw input): K=%s, b=%s" % (sess.run(W).flatten() / scaler.scale_, sess.run(b).flatten() - np.dot(scaler.mean_ / scaler.scale_, sess.run(W))) # Problem solved and we are happy. But... # I"d like to implement the logistic regression from a multi-class viewpoint instead of binary. # In machine learning domain, it is called softmax regression # In economic and statistics domain, it is called multinomial logit (MNL) model, proposed by Daniel McFadden, who shared the 2000 Nobel Memorial Prize in Economic Sciences. print "------------------------------------------------" print "We solve this binary classification problem again from the viewpoint of multinomial classification" print "------------------------------------------------" # As a tradition, sklearn first reg = LogisticRegression(C=9999999999, solver="newton-cg", multi_class="multinomial") reg.fit(x_data, y_data) print "Coefficients of sklearn: K=%s, b=%f" % (reg.coef_, reg.intercept_) print "A little bit difference at first glance. What about multiply them with 2?" # Then try tensorflow W = tf.Variable(tf.zeros([2, 2])) # first 2 is feature number, second 2 is class number b = tf.Variable(tf.zeros([1, 2])) V = tf.matmul(x_data_standard, W) + b y = tf.nn.softmax(V) # tensorflow provide a utility function to calculate the probability of observer n choose alternative i, you can replace it with `y = tf.exp(V) / tf.reduce_sum(tf.exp(V), keep_dims=True, reduction_indices=[1])` # Encode the y label in one-hot manner lb = preprocessing.LabelBinarizer() lb.fit(y_data) y_data_trans = lb.transform(y_data) y_data_trans = np.concatenate((1 - y_data_trans, y_data_trans), axis=1) # Only necessary for binary class loss = tf.reduce_mean(-tf.reduce_sum(y_data_trans * tf.log(y), reduction_indices=[1])) optimizer = tf.train.GradientDescentOptimizer(1.3) train = optimizer.minimize(loss) init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) for step in range(100): sess.run(train) if step % 10 == 0: print step, sess.run(W).flatten(), sess.run(b).flatten() print "Coefficients of tensorflow (input should be standardized): K=%s, b=%s" % (sess.run(W).flatten(), sess.run(b).flatten()) print "Coefficients of tensorflow (raw input): K=%s, b=%s" % ((sess.run(W) / scaler.scale_).flatten(), sess.run(b).flatten() - np.dot(scaler.mean_ / scaler.scale_, sess.run(W)))
输出如下:
Coefficients of sklearn: K=[[ 0.14834077 0.15890845]], b=-16.378743 0 [ 0.33699557 0.34786162] [ -4.84287721e-09] 10 [ 1.15830743 1.22841871] [ 0.02142336] 20 [ 1.3378191 1.42655993] [ 0.03946959] 30 [ 1.40735555 1.50197577] [ 0.04853692] 40 [ 1.43754184 1.53418231] [ 0.05283691] 50 [ 1.45117068 1.54856908] [ 0.05484771] 60 [ 1.45742035 1.55512536] [ 0.05578374] 70 [ 1.46030474 1.55814099] [ 0.05621871] 80 [ 1.46163988 1.55953443] [ 0.05642065] 90 [ 1.46225858 1.56017959] [ 0.0565144] Coefficients of tensorflow (input should be standardized): K=[ 1.46252561 1.56045783], b=[ 0.05655487] Coefficients of tensorflow (raw input): K=[ 0.14831361 0.15888004], b=[-16.26265144] ------------------------------------------------ We solve this binary classification problem again from the viewpoint of multinomial classification ------------------------------------------------ Coefficients of sklearn: K=[[ 0.07417039 0.07945423]], b=-8.189372 A little bit difference at first glance. What about multiply them with 2? 0 [-0.33699557 0.33699557 -0.34786162 0.34786162] [ 6.05359674e-09 -6.05359674e-09] 10 [-0.68416572 0.68416572 -0.72988117 0.72988123] [ 0.02157043 -0.02157041] 20 [-0.72234094 0.72234106 -0.77087188 0.77087194] [ 0.02693938 -0.02693932] 30 [-0.72958517 0.72958535 -0.7784785 0.77847856] [ 0.02802362 -0.02802352] 40 [-0.73103166 0.73103184 -0.77998811 0.77998811] [ 0.02824244 -0.02824241] 50 [-0.73132294 0.73132324 -0.78029168 0.78029174] [ 0.02828659 -0.02828649] 60 [-0.73138171 0.73138207 -0.78035289 0.78035301] [ 0.02829553 -0.02829544] 70 [-0.73139352 0.73139393 -0.78036523 0.78036535] [ 0.02829732 -0.0282972 ] 80 [-0.73139596 0.73139632 -0.78036767 0.78036791] [ 0.02829764 -0.02829755] 90 [-0.73139644 0.73139679 -0.78036815 0.78036839] [ 0.02829781 -0.02829765] Coefficients of tensorflow (input should be standardized): K=[-0.7313965 0.73139679 -0.78036827 0.78036839], b=[ 0.02829777 -0.02829769] Coefficients of tensorflow (raw input): K=[-0.07417037 0.07446811 -0.07913655 0.07945422], b=[ 8.1893692 -8.18937111]思考
对于逻辑回归,损失函数比线性回归模型复杂了一些。首先需要通过sigmoid函数,将线性回归的结果转化为0至1之间的概率值。然后写出每个样本的发生概率(似然),那么所有样本的发生概率就是每个样本发生概率的乘积。为了求导方便,我们对所有样本的发生概率取对数,保持其单调性的同时,可以将连乘变为求和(加法的求导公式比乘法的求导公式简单很多)。对数极大似然估计方法的目标函数是最大化所有样本的发生概率;机器学习习惯将目标函数称为损失,所以将损失定义为对数似然的相反数,以转化为极小值问题。
我们提到逻辑回归时,一般指的是二分类问题;然而这套思想是可以很轻松就拓展为多分类问题的,在机器学习领域一般称为softmax回归模型。本文的作者是统计学与计量经济学背景,因此一般将其称为MNL模型。
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/38335.html
摘要:贡献者飞龙版本最近总是有人问我,把这些资料看完一遍要用多长时间,如果你一本书一本书看的话,的确要用很长时间。为了方便大家,我就把每本书的章节拆开,再按照知识点合并,手动整理了这个知识树。 Special Sponsors showImg(https://segmentfault.com/img/remote/1460000018907426?w=1760&h=200); 贡献者:飞龙版...
摘要:前言本文使用训练多元线性回归模型,并将其与做比较。在这个例子中,变量一个是面积,一个是房间数,量级相差很大,如果不归一化,面积在目标函数和梯度中就会占据主导地位,导致收敛极慢。 前言 本文使用tensorflow训练多元线性回归模型,并将其与scikit-learn做比较。数据集来自Andrew Ng的网上公开课程Deep Learning 代码 #!/usr/bin/env pyth...
阅读 1171·2021-11-22 12:05
阅读 1284·2021-09-29 09:35
阅读 597·2019-08-30 15:55
阅读 3098·2019-08-30 14:12
阅读 928·2019-08-30 14:11
阅读 2835·2019-08-30 13:10
阅读 2376·2019-08-29 16:33
阅读 3289·2019-08-29 11:02