摘要:前言本文使用训练多元线性回归模型,并将其与做比较。在这个例子中,变量一个是面积,一个是房间数,量级相差很大,如果不归一化,面积在目标函数和梯度中就会占据主导地位,导致收敛极慢。
前言
本文使用tensorflow训练多元线性回归模型,并将其与scikit-learn做比较。数据集来自Andrew Ng的网上公开课程Deep Learning
代码#!/usr/bin/env python # -*- coding=utf-8 -*- # @author: 陈水平 # @date: 2016-12-30 # @description: compare multi linear regression of tensor flow to scikit-learn based on data from deep learning cource of Andrew Ng # @ref: http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex3/ex3.html # import numpy as np import tensorflow as tf from sklearn import linear_model from sklearn import preprocessing # Read x and y x_data = np.loadtxt("ex3x.dat").astype(np.float32) y_data = np.loadtxt("ex3y.dat").astype(np.float32) # We evaluate the x and y by sklearn to get a sense of the coefficients. reg = linear_model.LinearRegression() reg.fit(x_data, y_data) print "Coefficients of sklearn: K=%s, b=%f" % (reg.coef_, reg.intercept_) # Now we use tensorflow to get similar results. # Before we put the x_data into tensorflow, we need to standardize it # in order to achieve better performance in gradient descent; # If not standardized, the convergency speed could not be tolearated. # Reason: If a feature has a variance that is orders of magnitude larger than others, # it might dominate the objective function # and make the estimator unable to learn from other features correctly as expected. scaler = preprocessing.StandardScaler().fit(x_data) print scaler.mean_, scaler.scale_ x_data_standard = scaler.transform(x_data) W = tf.Variable(tf.zeros([2, 1])) b = tf.Variable(tf.zeros([1, 1])) y = tf.matmul(x_data_standard, W) + b loss = tf.reduce_mean(tf.square(y - y_data.reshape(-1, 1)))/2 optimizer = tf.train.GradientDescentOptimizer(0.3) train = optimizer.minimize(loss) init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) for step in range(100): sess.run(train) if step % 10 == 0: print step, sess.run(W).flatten(), sess.run(b).flatten() print "Coefficients of tensorflow (input should be standardized): K=%s, b=%s" % (sess.run(W).flatten(), sess.run(b).flatten()) print "Coefficients of tensorflow (raw input): K=%s, b=%s" % (sess.run(W).flatten() / scaler.scale_, sess.run(b).flatten() - np.dot(scaler.mean_ / scaler.scale_, sess.run(W)))
输出如下:
Coefficients of sklearn: K=[ 139.21066284 -8738.02148438], b=89597.927966 [ 2000.6809082 3.17021275] [ 7.86202576e+02 7.52842903e-01] 0 [ 31729.23632812 16412.6484375 ] [ 102123.7890625] 10 [ 97174.78125 5595.25585938] [ 333681.59375] 20 [ 106480.5703125 -3611.31201172] [ 340222.53125] 30 [ 108727.5390625 -5858.10302734] [ 340407.28125] 40 [ 109272.953125 -6403.52148438] [ 340412.5] 50 [ 109405.3515625 -6535.91503906] [ 340412.625] 60 [ 109437.4921875 -6568.05371094] [ 340412.625] 70 [ 109445.296875 -6575.85644531] [ 340412.625] 80 [ 109447.1875 -6577.75097656] [ 340412.625] 90 [ 109447.640625 -6578.20654297] [ 340412.625] Coefficients of tensorflow (input should be standardized): K=[ 109447.7421875 -6578.31152344], b=[ 340412.625] Coefficients of tensorflow (raw input): K=[ 139.21061707 -8737.9609375 ], b=[ 89597.78125]思考
对于梯度下降算法,变量是否标准化很重要。在这个例子中,变量一个是面积,一个是房间数,量级相差很大,如果不归一化,面积在目标函数和梯度中就会占据主导地位,导致收敛极慢。
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/38316.html
摘要:贡献者飞龙版本最近总是有人问我,把这些资料看完一遍要用多长时间,如果你一本书一本书看的话,的确要用很长时间。为了方便大家,我就把每本书的章节拆开,再按照知识点合并,手动整理了这个知识树。 Special Sponsors showImg(https://segmentfault.com/img/remote/1460000018907426?w=1760&h=200); 贡献者:飞龙版...
摘要:前言本文使用训练线性回归模型,并将其与做比较。数据集来自的网上公开课程代码陈水平输出如下思考对于,梯度下降的步长参数需要很仔细的设置,步子太大容易扯到蛋导致无法收敛步子太小容易等得蛋疼。迭代次数也需要细致的尝试。 前言 本文使用tensorflow训练线性回归模型,并将其与scikit-learn做比较。数据集来自Andrew Ng的网上公开课程Deep Learning 代码 #!/...
阅读 711·2021-11-16 11:44
阅读 3540·2019-08-26 12:13
阅读 3236·2019-08-26 10:46
阅读 2352·2019-08-23 12:37
阅读 1180·2019-08-22 18:30
阅读 2526·2019-08-22 17:30
阅读 1834·2019-08-22 17:26
阅读 2284·2019-08-22 16:20