资讯专栏INFORMATION COLUMN

Redis-py官方文档翻译

Alfred / 1978人阅读

摘要:采取两种实现命令其一类尽量坚持官方语法,但是以下除外没有实现,应该是线程安全的原因。线程安全性是线程安全的。由于线程安全原因,不提供实现,因为它会导致数据库的切换。

官网:https://github.com/andymccurd...
当前版本:2.10.5
注:这不是完整翻译,只提取了关键信息。省略了部分内容,如lua脚本支持。

pip install redis
pip install hiredis(解析器,可选。windows下好像不行。)

>>> import redis
>>> r = redis.StrictRedis(host="localhost", port=6379, db=0)
>>> r.set("foo", "bar")
True
>>> r.get("foo")
"bar"

redis-py采取两种client class实现redis命令:
其一、StrictRedis类尽量坚持官方语法,但是以下除外:

SELECT: 没有实现,应该是线程安全的原因。

DEL: 由于del是python语法关键字,所用delete来代替。

CONFIG GET|SET: 分开用 config_get or config_set来代替

MULTI/EXEC: 事务作为Pipeline类的其中一部分的实现。Pipeline默认保证了MULTI,EXEC声明。但是你可以指定transaction=False来禁用这一行为。

SUBSCRIBE/LISTEN:PubSub作为一个独立的类来实现发布订阅机制。

SCAN/SSCAN/HSCAN/ZSCAN:每个命令都对应一个等价的迭代器方法scan_iter/sscan_iter/hscan_iter/zscan_iter methods for this behavior.

其二、Redis类是StrictRedis的子类,提供redis-py版本向后的兼容性。

关于StrictRedis与Redis的区别:(官方推荐使用StrictRedis.)
以下几个方法在StrictRedis和Redis类中的参数顺序不同。
LREM: Order of "num" and "value" arguments reversed such that "num" can provide a default value of zero.
在Redis类中是这样的:
lrem(self, name, value, num=0)
在StrictRedis类中是这样的:
lrem(self, name, count, value)

ZADD: Redis specifies the "score" argument before "value". These were swapped accidentally when being implemented and not discovered until after people were already using it. The Redis class expects *args in the form of: name1, score1, name2, score2, ...
在Redis类中是这样的:
redis.zadd("my-key", "name1", 1.1, "name2", 2.2, name3=3.3, name4=4.4)
在StrictRedis中是这样的:
redis.zadd("my-key", 1.1, "name1", 2.2, "name2", name3=3.3, name4=4.4)

SETEX: Order of "time" and "value" arguments reversed.
在Redis类中是这样的:
setex(self, name, value, time)
而在StrictRedis中是这样的:
setex(self, name, time, value)

连接池
>>> pool = redis.ConnectionPool(host="localhost", port=6379, db=0)
>>> r = redis.Redis(connection_pool=pool)

Connections:redis-py提供两种类型的连接:基于TCP端口的,基于Unix socket文件的(需要redis服务器开启配置)。

>>> r = redis.Redis(unix_socket_path="/tmp/redis.sock")

如果你需要,自定义连接类,需要告知连接池。

>>> pool = redis.ConnectionPool(connection_class=YourConnectionClass,
                                your_arg="...", ...)

释放连接回到连接池:可以使用Redis类的reset()方法,或者使用with上下文管理语法。

解析器:
解析器控制如何解析Redis-server的响应内容,redis-py提供两种方式的解析器类支持:PythonParser和HiredisParser(需要多带带安装)。它优先选用HiredisParser,如果不存在,则选用PythonParser. Hiredis是redis核心团队开发的一个高性能c库,能够提高10x的解析速度。

响应回调:
The client class使用一系列的callbacks来完成响应到对应python类型的映射。这些响应回调,定义在 Redis client class中的RESPONSE_CALLBACKS字典中。你可以使用set_response_callback 方法来添加自定义回调类。这个方法接受两个参数:一个命令名字,一个回调类。回调类接受至少一个参数:响应内容,关键字参数作为命令调用时的参数。

线程安全性:

Redis client instances是线程安全的。由于线程安全原因,不提供select实现,因为它会导致数据库的切换。
在不同线程间传递PubSub or Pipeline对象也是不安全的。

Pipelines

Pipelines是Redis类的一个子类,支持缓存多个命令,然后作为单个请求发送。通过减少TCP请求次数来达到提供性能的目的。

>>> r = redis.Redis(...)
>>> r.set("bing", "baz")
>>> # Use the pipeline() method to create a pipeline instance
>>> pipe = r.pipeline()
>>> # The following SET commands are buffered
>>> pipe.set("foo", "bar")
>>> pipe.get("bing")
>>> # the EXECUTE call sends all buffered commands to the server, returning
>>> # a list of responses, one for each command.
>>> pipe.execute()
[True, "baz"]

Pipelines的实现采用流式API,故而你可以采用以下链式调用的方式:

>>> pipe.set("foo", "bar").sadd("faz", "baz").incr("auto_number").execute()
[True, True, 6]

Pipelines默认以原子性(事务)的形式执行所有缓存的命令,你也可以禁用这一行为:

>>> pipe = r.pipeline(transaction=False)

WATCH命令提供了在事务之前检测一个或多个key值的变化。一旦在事务执行之前,某个值发生了变化,那么事务将被取消然后抛出WatchError 异常。
利用watch我们可以实现client-side incr命令:

>>> with r.pipeline() as pipe:
...     while 1:
...         try:
...             # put a WATCH on the key that holds our sequence value
...             pipe.watch("OUR-SEQUENCE-KEY")
...             # after WATCHing, the pipeline is put into immediate execution
...             # mode until we tell it to start buffering commands again.
...             # this allows us to get the current value of our sequence
...             current_value = pipe.get("OUR-SEQUENCE-KEY")
...             next_value = int(current_value) + 1
...             # now we can put the pipeline back into buffered mode with MULTI
...             pipe.multi()
...             pipe.set("OUR-SEQUENCE-KEY", next_value)
...             # and finally, execute the pipeline (the set command)
...             pipe.execute()
...             # if a WatchError wasn"t raised during execution, everything
...             # we just did happened atomically.
...             break
...        except WatchError:
...             # another client must have changed "OUR-SEQUENCE-KEY" between
...             # the time we started WATCHing it and the pipeline"s execution.
...             # our best bet is to just retry.
...             continue

不过你可以使用transaction方法来简化这一操作:它包含handling and retrying watch errors的样板代码。第一参数为callable(这个callable只能接受一个Pipeline参数),及多个需要被WATCH的keys

>>> def client_side_incr(pipe):
...     current_value = pipe.get("OUR-SEQUENCE-KEY")
...     next_value = int(current_value) + 1
...     pipe.multi()
...     pipe.set("OUR-SEQUENCE-KEY", next_value)
>>>
>>> r.transaction(client_side_incr, "OUR-SEQUENCE-KEY")
[True]
Publish / Subscribe

PubSub对象subscribes to channels and listens for new messages。

>>> r = redis.StrictRedis(...)
>>> p = r.pubsub()

>>> p.subscribe("my-first-channel", "my-second-channel", ...)
>>> p.psubscribe("my-*", ...)

>>> p.get_message()
{"pattern": None, "type": "subscribe", "channel": "my-second-channel", "data": 1L}
>>> p.get_message()
{"pattern": None, "type": "subscribe", "channel": "my-first-channel", "data": 2L}
>>> p.get_message()
{"pattern": None, "type": "psubscribe", "channel": "my-*", "data": 3L}

通过PubSub获取消息时返回的是一个字典,字典key有如下几个:
type:其中一个, "subscribe", "unsubscribe", "psubscribe", "punsubscribe", "message", "pmessage"
channel: The channel [un]subscribed to or the channel a message was published to
pattern: The pattern that matched a published message"s channel. Will be None in all cases except for "pmessage" types.
data: The message data. With [un]subscribe messages, this value will be the number of channels and patterns the connection is currently subscribed to. With [p]message messages, this value will be the actual published message.
现在来发布消息:

# the publish method returns the number matching channel and pattern
# subscriptions. "my-first-channel" matches both the "my-first-channel"
# subscription and the "my-*" pattern subscription, so this message will
# be delivered to 2 channels/patterns
>>> r.publish("my-first-channel", "some data")
2
>>> p.get_message()
{"channel": "my-first-channel", "data": "some data", "pattern": None, "type": "message"}
>>> p.get_message()
{"channel": "my-first-channel", "data": "some data", "pattern": "my-*", "type": "pmessage"}

取消订阅:如果没有传递任何参数,那么这个PubSub订阅的所有的channels or patterns都会被取消。

>>> p.unsubscribe()
>>> p.punsubscribe("my-*")
>>> p.get_message()
{"channel": "my-second-channel", "data": 2L, "pattern": None, "type": "unsubscribe"}
>>> p.get_message()
{"channel": "my-first-channel", "data": 1L, "pattern": None, "type": "unsubscribe"}
>>> p.get_message()
{"channel": "my-*", "data": 0L, "pattern": None, "type": "punsubscribe"}
回调的方式处理发布的消息

redis-py还允许你通过回调的方式处理发布的消息。
Message handlers接受一个参数,the message,是一个字典对象。just like the examples above.
以回调形式订阅:subscribe接受关键字参数,键为channels or patterns,值为回调函数。

>>> def my_handler(message):
...     print "MY HANDLER: ", message["data"]
>>> p.subscribe(**{"my-channel": my_handler})

在你注册了回调处理的情况下, get_message()会返回None

默认情况下除了发布消息之外,还会传递 subscribe/unsubscribe成功的确认消息,如果你不想接收它们:ignore_subscribe_messages=True

>>> p = r.pubsub(ignore_subscribe_messages=True)
>>> p.subscribe("my-channel")
>>> p.get_message()  # hides the subscribe message and returns None
>>> r.publish("my-channel")
1
>>> p.get_message()
{"channel": "my-channel", "data": "my data", "pattern": None, "type": "message"}
三种读取消息的方式

第一种:无限循环通过PubSub对象的get_message()读取消息

>>> while True:
>>>     message = p.get_message()
>>>     if message:
>>>         # do something with the message
>>>     time.sleep(0.001)  # be nice to the system :)

第二种,通过阻塞方法listen()来读取:p.listen()返回一个generator,阻塞直到有消息可获取。

>>> for message in p.listen():
...     # do something with the message

第三种,开启一个事件循环线程pubsub.run_in_thread()方法 creates a new thread and starts the event loop. 并返回线程对象。
但是需要注意的是:如果你没有注册消息处理函数,那么调用run_in_thread()将会抛出异常redis.exceptions.PubSubError

>>> p.subscribe(**{"my-channel": my_handler})
>>> thread = p.run_in_thread(sleep_time=0.001)
# the event loop is now running in the background processing messages
# when it"s time to shut it down...
>>> thread.stop()
关于字符编码:

默认情况下,publish的消息会被编码,当你获取消息时得到的是编码后的字节,如果你需要它自动解码,创建Redis client实例时需要指定decode_responses=True,(译者注:不建议使用该选项,因为当存在pickle序列化的值时,client.get(key)时会出现解码失败的错误UnicodeDecodeError)

关闭释放资源:

PubSub.close() method to shutdown the connection.

>>> p = r.pubsub()
>>> ...
>>> p.close()
LUA Scripting支持:

略。

Sentinel support与节点发现:

Redis Sentinel用于发现Redis节点。请确保至少一个Sentinel daemon 进程在运行。
你可以使用Sentinel connection to discover the master and slaves network addresses:

>>> from redis.sentinel import Sentinel
>>> sentinel = Sentinel([("localhost", 26379)], socket_timeout=0.1)
>>> sentinel.discover_master("mymaster")
("127.0.0.1", 6379)
>>> sentinel.discover_slaves("mymaster")
[("127.0.0.1", 6380)]

>>> master = sentinel.master_for("mymaster", socket_timeout=0.1)
>>> slave = sentinel.slave_for("mymaster", socket_timeout=0.1)
>>> master.set("foo", "bar")
>>> slave.get("foo")
"bar"

上面的master and slave对象就是一个普通的StrictRedis对象实例。如果Sentinel配置了连接池的话,它们还会使用这个连接池。
可能抛出的异常:MasterNotFoundError ,SlaveNotFoundError 它们都是ConnectionError的子类

Scan Iterators

Redis 2.8之后有了*SCAN命令。redis-py also exposes the following methods that return Python iterators for convenience: scan_iter, hscan_iter, sscan_iter and zscan_iter.

>>> for key, value in (("A", "1"), ("B", "2"), ("C", "3")):
...     r.set(key, value)
>>> for key in r.scan_iter():
...     print key, r.get(key)
A 1
B 2
C 3

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/38234.html

相关文章

  • 区分Python的redis客户端:hiredis、hiredis-pyredis-py

    摘要:由于学习实战用的是,需要按的客户端库。提供两个类,和。还写了一个版本的即。使用可以使得客户端解析服务端响应内容的速度提升倍。而且当执行检索多条数据时性能更显著,如等。 由于学习《Redis实战》用的是Python,需要按Python的redis客户端库。被几个库搞得有点晕,在此区分一下。 区分hiredis、hiredis-py、redis-py redis官网Github:https...

    Hanks10100 评论0 收藏0
  • Django-缓存

    摘要:自带了一个健壮的缓存系统来保存动态页面,避免每次请求都重新计算。缓存中的和方法是很常见的。尽量放在第一个继承的类设置过期时间根据自己需求加缓存。目前这个缓存使用的是内存。 概述:对于中等流量的网站来说,尽可能的减少开销是非常必要的。缓存数据就是为了保存那些需要很多计算资源的结果,这样的话就不必在下次重复消耗计算资源。获取数据的数据的时候就是去缓存中拿,拿到了直接返回,没拿到就去数据库中...

    aervon 评论0 收藏0

发表评论

0条评论

最新活动
阅读需要支付1元查看
<