资讯专栏INFORMATION COLUMN

最长回文子串——Manacher 算法

mingzhong / 1748人阅读

摘要:问题定义最长回文子串问题给定一个字符串,求它的最长回文子串长度。可以采用动态规划,列举回文串的起点或者终点来解最长回文串问题,无需讨论串长度的奇偶性。

0. 问题定义

最长回文子串问题:给定一个字符串,求它的最长回文子串长度。

如果一个字符串正着读和反着读是一样的,那它就是回文串。下面是一些回文串的实例:

12321    a    aba    abba    aaaa   tattarrattat(牛津英语词典中最长的回文单词)
1. Brute-force 解法

对于最长回文子串问题,最简单粗暴的办法是:找到字符串的所有子串,遍历每一个子串以验证它们是否为回文串。一个子串由子串的起点和终点确定,因此对于一个长度为n的字符串,共有n^2个子串。这些子串的平均长度大约是n/2,因此这个解法的时间复杂度是O(n^3)。

2. 改进的方法

显然所有的回文串都是对称的。长度为奇数回文串以最中间字符的位置为对称轴左右对称,而长度为偶数的回文串的对称轴在中间两个字符之间的空隙。可否利用这种对称性来提高算法效率呢?答案是肯定的。我们知道整个字符串中的所有字符,以及字符间的空隙,都可能是某个回文子串的对称轴位置。可以遍历这些位置,在每个位置上同时向左和向右扩展,直到左右两边的字符不同,或者达到边界。对于一个长度为n的字符串,这样的位置一共有n+n-1=2n-1个,在每个位置上平均大约要进行n/4次字符比较,于是此算法的时间复杂度是O(n^2)。

3. Manacher 算法

对于一个比较长的字符串,O(n^2)的时间复杂度是难以接受的。Can we do better?

先来看看解法2存在的缺陷。

1) 由于回文串长度的奇偶性造成了不同性质的对称轴位置,解法2要对两种情况分别处理;
2) 很多子串被重复多次访问,造成较差的时间效率。

缺陷2)可以通过这个直观的小?体现:

char: a b a b a
  i : 0 1 2 3 4

当i==1,和i==2时,左边的子串aba分别被遍历了一次。

如果我们能改善解法2的不足,就很有希望能提高算法的效率。Manacher正是针对这些问题改进算法。

(1) 解决长度奇偶性带来的对称轴位置问题

Manacher算法首先对字符串做一个预处理,在所有的空隙位置(包括首尾)插入同样的符号,要求这个符号是不会在原串中出现的。这样会使得所有的串都是奇数长度的。以插入#号为例:

aba  ———>  #a#b#a#
abba ———>  #a#b#b#a#

插入的是同样的符号,且符号不存在于原串,因此子串的回文性不受影响,原来是回文的串,插完之后还是回文的,原来不是回文的,依然不会是回文。

(2) 解决重复访问的问题

我们把一个回文串中最左或最右位置的字符与其对称轴的距离称为回文半径。Manacher定义了一个回文半径数组RL,用RL[i]表示以第i个字符为对称轴的回文串的回文半径。我们一般对字符串从左往右处理,因此这里定义RL[i]为第i个字符为对称轴的回文串的最右一个字符与字符i的距离。对于上面插入分隔符之后的两个串,可以得到RL数组:

char:    # a # b # a #
 RL :    1 2 1 4 1 2 1
RL-1:    0 1 0 3 0 1 0
  i :    0 1 2 3 4 5 6

char:    # a # b # b # a #
 RL :    1 2 1 2 5 2 1 2 1
RL-1:    0 1 0 1 4 1 0 1 0
  i :    0 1 2 3 4 5 6 7 8

上面我们还求了一下RL[i]-1。通过观察可以发现,RL[i]-1的值,正是在原本那个没有插入过分隔符的串中,以位置i为对称轴的最长回文串的长度。那么只要我们求出了RL数组,就能得到最长回文子串的长度。

于是问题变成了,怎样高效地求的RL数组。基本思路是利用回文串的对称性,扩展回文串

我们再引入一个辅助变量MaxRight,表示当前访问到的所有回文子串,所能触及的最右一个字符的位置。另外还要记录下MaxRight对应的回文串的对称轴所在的位置,记为pos,它们的位置关系如下。

我们从左往右地访问字符串来求RL,假设当前访问到的位置为i,即要求RL[i],在对应上图,i必然是在po右边的(obviously)。但我们更关注的是,i是在MaxRight的左边还是右边。我们分情况来讨论。

1)当iMaxRight的左边

情况1)可以用下图来刻画:

我们知道,图中两个红色块之间(包括红色块)的串是回文的;并且以i为对称轴的回文串,是与红色块间的回文串有所重叠的。我们找到i关于pos的对称位置j,这个j对应的RL[j]我们是已经算过的。根据回文串的对称性,以i为对称轴的回文串和以j为对称轴的回文串,有一部分是相同的。这里又有两种细分的情况。

j为对称轴的回文串比较短,短到像下图这样。

这时我们知道RL[i]至少不会小于RL[j],并且已经知道了部分的以i为中心的回文串,于是可以令RL[i]=RL[j]。但是以i为对称轴的回文串可能实际上更长,因此我们试着以i为对称轴,继续往左右两边扩展,直到左右两边字符不同,或者到达边界。

j为对称轴的回文串很长,这么长:

这时,我们只能确定,两条蓝线之间的部分(即不超过MaxRight的部分)是回文的,于是从这个长度开始,尝试以i为中心向左右两边扩展,,直到左右两边字符不同,或者到达边界。

不论以上哪种情况,之后都要尝试更新MaxRightpos,因为有可能得到更大的MaxRight。

具体操作如下:

step 1: 令RL[i]=min(RL[2*pos-i], MaxRight-i)
step 2: 以i为中心扩展回文串,直到左右两边字符不同,或者到达边界。
step 3: 更新MaxRight和pos
2)当iMaxRight的右边

遇到这种情况,说明以i为对称轴的回文串还没有任何一个部分被访问过,于是只能从i的左右两边开始尝试扩展了,当左右两边字符不同,或者到达字符串边界时停止。然后更新MaxRightpos

(3) 算法实现
#Python
def manacher(s):
    #预处理
    s="#"+"#".join(s)+"#"

    RL=[0]*len(s)
    MaxRight=0
    pos=0
    MaxLen=0
    for i in range(len(s)):
        if i=0 and i+RL[i]MaxRight:
            MaxRight=RL[i]+i-1
            pos=i
        #更新最长回文串的长度
        MaxLen=max(MaxLen, RL[i])
    return MaxLen-1
(4) 复杂度分析

空间复杂度:插入分隔符形成新串,占用了线性的空间大小;RL数组也占用线性大小的空间,因此空间复杂度是线性的。
时间复杂度:尽管代码里面有两层循环,通过amortized analysis我们可以得出,Manacher的时间复杂度是线性的。由于内层的循环只对尚未匹配的部分进行,因此对于每一个字符而言,只会进行一次,因此时间复杂度是O(n)

4. 更多关于回文串的 fun facts(参考自维基百科)

4.1 人们在一座名为赫库兰尼姆的古城遗迹中,找到了一个好玩的拉丁语回文串:sator arepo tenet opera rotas。翻译成中文大概就是`一个叫做Arepo的播种者,他用力地扶(把)着车轮。这个串的每个单词首字母刚好组成了第一个单词,每个单词的第二个字母刚好组成了第二个单词...于是乎,如果写出酱紫,你会发现上下左右四个方向读起来是一样的。这个串被称为 Sator Square.

4.2 本文开头给出的单词tattarrattat,出现在爱尔兰作家詹姆斯·乔伊斯的小说《尤利西斯》,是敲门的意思。吉尼斯纪录的最长回文英文单词是detartrated,是个化学术语。另外,还有些已出版的英文回文小说(你们歪果仁真会玩),比如Satire: VeritasDr Awkward & Olson in Oslo等。

2015.11.9 更新。

可以采用动态规划,列举回文串的起点或者终点来解最长回文串问题,无需讨论串长度的奇偶性。
看下面的扎瓦代码,容易理解。

    public int longestPalindrome(String s) {
     int n=s.length();
     boolean[][] pal=new boolean[n][n];
     //pal[i][j] 表示s[i...j]是否是回文串
     int maxLen=0;
     for (int i=0;i=0){
             if (s.charAt(j)==s.charAt(i)&&(i-j<2||pal[j+1][i-1])){
                 pal[j][i]=true;
                maxLen=Math.max(maxLen, i-j+1);
             }
             j--;
         }
     }
     return maxLen;
    }

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/37625.html

相关文章

  • LeetCode——Longest Palindromic Substring

    摘要:题目即求最长回文子序列原题链接此篇博客仅为学习记录我的解法及代码暴力解决,用及进行两层遍历循环中套一层循环,用遍历,求最长回文序列字符串,同时用变量记录最长子序列这种写法很暴力,效率很低,一层循环,一层循环,回文序列对比一层,时间复杂度为辣 题目: Given a string s, find the longest palindromic substring in s. You ma...

    shevy 评论0 收藏0
  • Manacher算法

    摘要:若他的子串为回文串,则相对于对称的另一端子串必然是回文串。回文串必定是中心对称的,也就是。目前确定的是回文半径范围内能确定的值,对于半径外的字符因为不知能能否和已知回文串继续构成更大回文串,所以也要进行判断。 今天思考一道题的时候,学习了一些思路,其中 Manacher 算法很有必要记录下来。本文参考了:http://blog.csdn.net/ggggiqny... 这道题的内容是:...

    buildupchao 评论0 收藏0
  • 最长回文子串

    摘要:给定一个字符串,找到中最长的回文子串。你可以假设的最大长度为。示例输入输出注意也是一个有效答案。 给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。 示例 1: 输入: babad输出: bab注意: aba 也是一个有效答案。 示例 2: 输入: cbbd输出: bb 用的Manacher算法 var longestPalindrome = fu...

    jemygraw 评论0 收藏0
  • 获取最长回文子串

    摘要:以下是最长回文子串的相关代码,相关逻辑已在注释中注明我们原有的字符串可能存在两种回文子串,一种是具有基数个元素例如一种是具有偶数个元素例如这样的话分情况判断比较复杂所以我们对原字符串进行扩充在相邻元素中插入特殊值插入后的原基数回文子串变成了 以下是最长回文子串的Manacher‘s Algorithm相关代码,相关逻辑已在注释中注明: public static String solu...

    ymyang 评论0 收藏0
  • [Leetcode] Longest Palindromic Substring 最长回文子字符串

    摘要:这种解法中,外层循环遍历的是子字符串的中心点,内层循环则是从中心扩散,一旦不是回文就不再计算其他以此为中心的较大的字符串。 Longest Palindromic Substring Given a string S, find the longest palindromic substring in S. You may assume that the maximum length ...

    KnewOne 评论0 收藏0

发表评论

0条评论

mingzhong

|高级讲师

TA的文章

阅读更多
最新活动
阅读需要支付1元查看
<