资讯专栏INFORMATION COLUMN

Hive常用函数的使用

MyFaith / 1730人阅读

摘要:示例本地创建测试文件放入中此时在表中就可以查看到数据注意如果删除外部表,里的文件并不会删除也就是如果包删除,下文件并不会被删除。示例分组聚合构建测试数据建分区表,导入数据查看数据查看表分区每一行的变成大写针对每一行进行运算

文章作者:foochane 

原文链接:https://foochane.cn/article/2019062501.html

1 基本介绍 1.1 HIVE简单介绍

Hive是一个可以将SQL翻译为MR程序的工具,支持用户将HDFS上的文件映射为表结构,然后用户就可以输入SQL对这些表(HDFS上的文件)进行查询分析。Hive将用户定义的库、表结构等信息存储hive的元数据库(可以是本地derby,也可以是远程mysql)中。

1.2 Hive的用途

做数据分析,不用自己写大量的MR程序,只需要写SQL脚本即可

用于构建大数据体系下的数据仓库

hive 2 以后 把底层引擎从MapReduce换成了Spark

启动hive前要先启动hdfsyarn

2 使用方式 2.1 方式1:直接使用hive服务端

输入命令 $ hive即可:

hadoop@Master:~$ hive
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/local/bigdata/hive-2.3.5/lib/log4j-slf4j-impl-2.6.2.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/local/bigdata/hadoop-2.7.1/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]

Logging initialized using configuration in file:/usr/local/bigdata/hive-2.3.5/conf/hive-log4j2.properties Async: true
Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
hive>show databases;
OK
dbtest
default
Time taken: 3.539 seconds, Fetched: 2 row(s)
hive>

技巧:
让提示符显示当前库:

hive>set hive.cli.print.current.db=true;

显示查询结果是显示自带名称:

hive>set hive.cli.print.header=true;

这样设置只是对当前窗口有效,永久生效可以在当前用户目录下建一个.hiverc文件。
加入如下内容:

set hive.cli.print.current.db=true;
set hive.cli.print.header=true;
2.2 方式2:使用beeline客户端

将hive启动为一个服务端,然后可以在任意一台机器上使用beeline客户端连接hive服务,进行交互式查询

hive是一个单机的服务端可以在任何一台机器里安装,它访问的是hdfs集群。

启动hive服务 :

$ nohup hiveserver2 1>/dev/null 2>&1 &

启动后,可以用beeline去连接,beeline是一个客户端,可以在任意机器启动,只要能够跟hive服务端相连即可。

在本地启动beeline

$ beeline -u jdbc:hive2://localhost:10000 -n hadoop -p hadoop

在启动机器上启动beeline

$ beeline -u jdbc:hive2://Master:10000 -n hadoop -p hadoop

示例:

hadoop@Master:~$ beeline -u jdbc:hive2://Master:10000 -n hadoop -p hadoop
Connecting to jdbc:hive2://Master:10000
19/06/25 01:50:12 INFO jdbc.Utils: Supplied authorities: Master:10000
19/06/25 01:50:12 INFO jdbc.Utils: Resolved authority: Master:10000
19/06/25 01:50:13 INFO jdbc.HiveConnection: Will try to open client transport with JDBC Uri: jdbc:hive2://Master:10000
Connected to: Apache Hive (version 2.3.5)
Driver: Hive JDBC (version 1.2.1.spark2)
Transaction isolation: TRANSACTION_REPEATABLE_READ
Beeline version 1.2.1.spark2 by Apache Hive
0: jdbc:hive2://Master:10000> 
参数说明

u :指定连接方式

n :登录的用户(系统用户)

p :用户密码

报错
 errorMessage:Failed to open new session: java.lang.RuntimeException: org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.security.authorize.AuthorizationException): User: hadoop is not allowed to impersonate hadoop), serverProtocolVersion:null)
解决

在 hadoop配置文件中的core-site.xml 文件中添加如下内容,然后重启hadoop集群:


      hadoop.proxyuser.hadoop.groups
      hadoop
      Allow the superuser oozie to impersonate any members of the group group1 and group2
 
 
 
      hadoop.proxyuser.hadoop.hosts
      Master,127.0.0.1,localhost
      The superuser can connect only from host1 and host2 to impersonate a user
  
2.3 方式3:使用hive命令运行sql

接用 hive -e 在命令行中运行sql命令,该命令可以一起运行多条sql语句,用;隔开。

hive -e "sql1;sql2;sql3;sql4"

另外,还可以使用 hive -f命令。

事先将sql语句写入一个文件比如 q.hql ,然后用hive -f命令执行: 
 

bin/hive -f q.hql
2.4 方式4:写脚本

可以将方式3写入一个xxx.sh脚本中,然后运行该脚本。

3 表的基本操作 3.1 新建数据库
create database db1;

示例:

0: jdbc:hive2://Master:10000> create database db1;
No rows affected (1.123 seconds)
0: jdbc:hive2://Master:10000> show databases;
+----------------+--+
| database_name  |
+----------------+--+
| db1            |
| dbtest         |
| default        |
+----------------+--+

成功后,hive就会在/user/hive/warehouse/下建一个文件夹: db1.db

3.2 删除数据库
drop database db1;

示例:

0: jdbc:hive2://Master:10000> drop database db1;
No rows affected (0.969 seconds)
0: jdbc:hive2://Master:10000> show databases;
+----------------+--+
| database_name  |
+----------------+--+
| dbtest         |
| default        |
+----------------+--+
3.3 建内部表
use db1;
create table t_test(id int,name string,age int)
row format delimited
fields terminated by ",";

示例:

0: jdbc:hive2://Master:10000> use db1;
No rows affected (0.293 seconds)
0: jdbc:hive2://Master:10000> create table t_test(id int,name string,age int)
0: jdbc:hive2://Master:10000> row format delimited
0: jdbc:hive2://Master:10000> fields terminated by ",";
No rows affected (1.894 seconds)
0: jdbc:hive2://Master:10000> desc db1.t_test;
+-----------+------------+----------+--+
| col_name  | data_type  | comment  |
+-----------+------------+----------+--+
| id        | int        |          |
| name      | string     |          |
| age       | int        |          |
+-----------+------------+----------+--+
3 rows selected (0.697 seconds)

建表后,hive会在仓库目录中建一个表目录: /user/hive/warehouse/db1.db/t_test

3.4 建外部表
create external table t_test1(id int,name string,age int)
row format delimited
fields terminated by ","
location "/user/hive/external/t_test1";

这里的location指的是hdfs上的目录,可以直接在该目录下放入相应格式的文件,就可以在hive表中查看到。

示例:

0: jdbc:hive2://Master:10000> create external table t_test1(id int,name string,age int)
0: jdbc:hive2://Master:10000> row format delimited
0: jdbc:hive2://Master:10000> fields terminated by ","
0: jdbc:hive2://Master:10000> location "/user/hive/external/t_test1";
No rows affected (0.7 seconds)
0: jdbc:hive2://Master:10000> desc db1.t_test1;
+-----------+------------+----------+--+
| col_name  | data_type  | comment  |
+-----------+------------+----------+--+
| id        | int        |          |
| name      | string     |          |
| age       | int        |          |
+-----------+------------+----------+--+
3 rows selected (0.395 seconds)

本地创建测试文件user.data

1,xiaowang,28
2,xiaoli,18
3,xiaohong,23

放入hdfs中:

$ hdfs dfs -mkdir -p /user/hive/external/t_test1
$ hdfs dfs -put ./user.data /user/hive/external/t_test1

此时在hive表中就可以查看到数据:

0: jdbc:hive2://Master:10000> select * from db1.t_test1;
+-------------+---------------+--------------+--+
| t_test1.id  | t_test1.name  | t_test1.age  |
+-------------+---------------+--------------+--+
| 1           | xiaowang      | 28           |
| 2           | xiaoli        | 18           |
| 3           | xiaohong      | 23           |
+-------------+---------------+--------------+--+
3 rows selected (8 seconds)

注意:如果删除外部表,hdfs里的文件并不会删除

也就是如果包db1.t_test1删除,hdfs下/user/hive/external/t_test1/user.data文件并不会被删除。

3.5 导入数据

本质上就是把数据文件放入表目录;

可以用hive命令来做:

load data [local] inpath "/data/path" [overwrite] into table t_test;

local代表导入本地数据。

导入本地数据

load data local inpath "/home/hadoop/user.data" into table t_test;

示例:

0: jdbc:hive2://Master:10000> load data local inpath "/home/hadoop/user.data" into table t_test;
No rows affected (2.06 seconds)
0: jdbc:hive2://Master:10000> select * from db1.t_test;
+------------+--------------+-------------+--+
| t_test.id  | t_test.name  | t_test.age  |
+------------+--------------+-------------+--+
| 1          | xiaowang     | 28          |
| 2          | xiaoli       | 18          |
| 3          | xiaohong     | 23          |
+------------+--------------+-------------+--+

导入hdfs中的数据

load data inpath "/user/hive/external/t_test1/user.data" into table t_test;

示例:

0: jdbc:hive2://Master:10000> load data inpath "/user/hive/external/t_test1/user.data" into table t_test;
No rows affected (1.399 seconds)
0: jdbc:hive2://Master:10000> select * from db1.t_test;
+------------+--------------+-------------+--+
| t_test.id  | t_test.name  | t_test.age  |
+------------+--------------+-------------+--+
| 1          | xiaowang     | 28          |
| 2          | xiaoli       | 18          |
| 3          | xiaohong     | 23          |
| 1          | xiaowang     | 28          |
| 2          | xiaoli       | 18          |
| 3          | xiaohong     | 23          |
+------------+--------------+-------------+--+
6 rows selected (0.554 seconds)

注意:从本地导入数据,本地数据不是发生变化,从hdfs中导入数据,hdfs中的导入的文件会被移动到数据仓库相应的目录下

3.6 建分区表

分区的意义在于可以将数据分子目录存储,以便于查询时让数据读取范围更精准

create table t_test1(id int,name string,age int,create_time bigint)
partitioned by (day string,country string)
row format delimited
fields terminated by ",";

插入数据到指定分区:

> load data [local] inpath "/data/path1" [overwrite] into table t_test partition(day="2019-06-04",country="China");
> load data [local] inpath "/data/path2" [overwrite] into table t_test partition(day="2019-06-05",country="China");
> load data [local] inpath "/data/path3" [overwrite] into table t_test partition(day="2019-06-04",country="England");

导入完成后,形成的目录结构如下:

/user/hive/warehouse/db1.db/t_test1/day=2019-06-04/country=China/...
/user/hive/warehouse/db1.db/t_test1/day=2019-06-04/country=England/...
/user/hive/warehouse/db1.db/t_test1/day=2019-06-05/country=China/...
4 查询语法 4.1 条件查询
select * from t_table where a<1000 and b>0;
4.2 join关联查询

各类join

测试数据:
a.txt:

a,1
b,2
c,3
d,4

b.txt:

b,16
c,17
d,18
e,19

建表导入数据:

create table t_a(name string,num int)
row format delimited
fields terminated by ",";

create table t_b(name string,age int)
row format delimited
fields terminated by ",";

load data local inpath "/home/hadoop/a.txt" into table t_a;
load data local inpath "/home/hadoop/b.txt" into table t_b;

表数据如下:

0: jdbc:hive2://Master:10000> select * from t_a;
+-----------+----------+--+
| t_a.name  | t_a.num  |
+-----------+----------+--+
| a         | 1        |
| b         | 2        |
| c         | 3        |
| d         | 4        |
+-----------+----------+--+
4 rows selected (0.523 seconds)
0: jdbc:hive2://Master:10000> select * from t_b;
+-----------+----------+--+
| t_b.name  | t_b.age  |
+-----------+----------+--+
| b         | 16       |
| c         | 17       |
| d         | 18       |
| e         | 19       |
+-----------+----------+--+

4 rows selected (0.482 seconds)
4.3 内连接

指定join条件

select a.*,b.*
from 
t_a a join t_b b on a.name=b.name;

示例:

0: jdbc:hive2://Master:10000> select a.*,b.*
0: jdbc:hive2://Master:10000> from
0: jdbc:hive2://Master:10000> t_a a join t_b b on a.name=b.name;
....
+---------+--------+---------+--------+--+
| a.name  | a.num  | b.name  | b.age  |
+---------+--------+---------+--------+--+
| b       | 2      | b       | 16     |
| c       | 3      | c       | 17     |
| d       | 4      | d       | 18     |
+---------+--------+---------+--------+--+
4.4 左外连接(左连接)
select a.*,b.*
from 
t_a a left outer join t_b b on a.name=b.name;

示例:

0: jdbc:hive2://Master:10000> select a.*,b.*
0: jdbc:hive2://Master:10000> from
0: jdbc:hive2://Master:10000> t_a a left outer join t_b b on a.name=b.name;
...
+---------+--------+---------+--------+--+
| a.name  | a.num  | b.name  | b.age  |
+---------+--------+---------+--------+--+
| a       | 1      | NULL    | NULL   |
| b       | 2      | b       | 16     |
| c       | 3      | c       | 17     |
| d       | 4      | d       | 18     |
+---------+--------+---------+--------+--+

4.5 右外连接(右连接)
select a.*,b.*
from 
t_a a right outer join t_b b on a.name=b.name;

示例:

0: jdbc:hive2://Master:10000> select a.*,b.*
0: jdbc:hive2://Master:10000> from
0: jdbc:hive2://Master:10000> t_a a right outer join t_b b on a.name=b.name;
....
+---------+--------+---------+--------+--+
| a.name  | a.num  | b.name  | b.age  |
+---------+--------+---------+--------+--+
| b       | 2      | b       | 16     |
| c       | 3      | c       | 17     |
| d       | 4      | d       | 18     |
| NULL    | NULL   | e       | 19     |
+---------+--------+---------+--------+--+
4.6 全外连接
select a.*,b.*
from
t_a a full outer join t_b b on a.name=b.name;

示例:

0: jdbc:hive2://Master:10000> select a.*,b.*
0: jdbc:hive2://Master:10000> from
0: jdbc:hive2://Master:10000> t_a a full outer join t_b b on a.name=b.name;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
+---------+--------+---------+--------+--+
| a.name  | a.num  | b.name  | b.age  |
+---------+--------+---------+--------+--+
| a       | 1      | NULL    | NULL   |
| b       | 2      | b       | 16     |
| c       | 3      | c       | 17     |
| d       | 4      | d       | 18     |
| NULL    | NULL   | e       | 19     |
+---------+--------+---------+--------+--+
4.7 左半连接

求存在于a表,且b表里也存在的数据。

select a.*
from 
t_a a left semi join t_b b on a.name=b.name;

示例:

0: jdbc:hive2://Master:10000> select a.*
0: jdbc:hive2://Master:10000> from
0: jdbc:hive2://Master:10000> t_a a left semi join t_b b on a.name=b.name;
.....
+---------+--------+--+
| a.name  | a.num  |
+---------+--------+--+
| b       | 2      |
| c       | 3      |
| d       | 4      |
+---------+--------+--+
4.8 group by分组聚合

构建测试数据

192.168.33.3,http://www.xxx.cn/stu,2019-08-04 15:30:20
192.168.33.3,http://www.xxx.cn/teach,2019-08-04 15:35:20
192.168.33.4,http://www.xxx.cn/stu,2019-08-04 15:30:20
192.168.33.4,http://www.xxx.cn/job,2019-08-04 16:30:20

192.168.33.5,http://www.xxx.cn/job,2019-08-04 15:40:20
192.168.33.3,http://www.xxx.cn/stu,2019-08-05 15:30:20
192.168.44.3,http://www.xxx.cn/teach,2019-08-05 15:35:20
192.168.33.44,http://www.xxx.cn/stu,2019-08-05 15:30:20
192.168.33.46,http://www.xxx.cn/job,2019-08-05 16:30:20

192.168.33.55,http://www.xxx.cn/job,2019-08-05 15:40:20
192.168.133.3,http://www.xxx.cn/register,2019-08-06 15:30:20
192.168.111.3,http://www.xxx.cn/register,2019-08-06 15:35:20
192.168.34.44,http://www.xxx.cn/pay,2019-08-06 15:30:20
192.168.33.46,http://www.xxx.cn/excersize,2019-08-06 16:30:20
192.168.33.55,http://www.xxx.cn/job,2019-08-06 15:40:20
192.168.33.46,http://www.xxx.cn/excersize,2019-08-06 16:30:20
192.168.33.25,http://www.xxx.cn/job,2019-08-06 15:40:20
192.168.33.36,http://www.xxx.cn/excersize,2019-08-06 16:30:20
192.168.33.55,http://www.xxx.cn/job,2019-08-06 15:40:20

建分区表,导入数据:

create table t_pv(ip string,url string,time string)
partitioned by (dt string)
row format delimited 
fields terminated by ",";

load data local inpath "/home/hadoop/pv.log.0804" into table t_pv partition(dt="2019-08-04");
load data local inpath "/home/hadoop/pv.log.0805" into table t_pv partition(dt="2019-08-05");
load data local inpath "/home/hadoop/pv.log.0806" into table t_pv partition(dt="2019-08-06");

查看数据:

0: jdbc:hive2://Master:10000> select * from t_pv;
+----------------+------------------------------+----------------------+-------------+--+
|    t_pv.ip     |           t_pv.url           |      t_pv.time       |   t_pv.dt   |
+----------------+------------------------------+----------------------+-------------+--+
| 192.168.33.3   | http://www.xxx.cn/stu        | 2019-08-04 15:30:20  | 2019-08-04  |
| 192.168.33.3   | http://www.xxx.cn/teach      | 2019-08-04 15:35:20  | 2019-08-04  |
| 192.168.33.4   | http://www.xxx.cn/stu        | 2019-08-04 15:30:20  | 2019-08-04  |
| 192.168.33.4   | http://www.xxx.cn/job        | 2019-08-04 16:30:20  | 2019-08-04  |
| 192.168.33.5   | http://www.xxx.cn/job        | 2019-08-04 15:40:20  | 2019-08-05  |
| 192.168.33.3   | http://www.xxx.cn/stu        | 2019-08-05 15:30:20  | 2019-08-05  |
| 192.168.44.3   | http://www.xxx.cn/teach      | 2019-08-05 15:35:20  | 2019-08-05  |
| 192.168.33.44  | http://www.xxx.cn/stu        | 2019-08-05 15:30:20  | 2019-08-05  |
| 192.168.33.46  | http://www.xxx.cn/job        | 2019-08-05 16:30:20  | 2019-08-05  |
| 192.168.33.55  | http://www.xxx.cn/job        | 2019-08-05 15:40:20  | 2019-08-06  |
| 192.168.133.3  | http://www.xxx.cn/register   | 2019-08-06 15:30:20  | 2019-08-06  |
| 192.168.111.3  | http://www.xxx.cn/register   | 2019-08-06 15:35:20  | 2019-08-06  |
| 192.168.34.44  | http://www.xxx.cn/pay        | 2019-08-06 15:30:20  | 2019-08-06  |
| 192.168.33.46  | http://www.xxx.cn/excersize  | 2019-08-06 16:30:20  | 2019-08-06  |
| 192.168.33.55  | http://www.xxx.cn/job        | 2019-08-06 15:40:20  | 2019-08-06  |
| 192.168.33.46  | http://www.xxx.cn/excersize  | 2019-08-06 16:30:20  | 2019-08-06  |
| 192.168.33.25  | http://www.xxx.cn/job        | 2019-08-06 15:40:20  | 2019-08-06  |
| 192.168.33.36  | http://www.xxx.cn/excersize  | 2019-08-06 16:30:20  | 2019-08-06  |
| 192.168.33.55  | http://www.xxx.cn/job        | 2019-08-06 15:40:20  | 2019-08-06  |
+----------------+------------------------------+----------------------+-------------+--+

查看表分区:

show partitions t_pv;
0: jdbc:hive2://Master:10000> show partitions t_pv;
+----------------+--+
|   partition    |
+----------------+--+
| dt=2019-08-04  |
| dt=2019-08-05  |
| dt=2019-08-06  |
+----------------+--+
3 rows selected (0.575 seconds)
每一行的url变成大写

针对每一行进行运算

select ip,upper(url),time
from t_pv
0: jdbc:hive2://Master:10000> select ip,upper(url),time
0: jdbc:hive2://Master:10000> from t_pv
+----------------+------------------------------+----------------------+--+
|       ip       |             _c1              |         time         |
+----------------+------------------------------+----------------------+--+
| 192.168.33.3   | HTTP://WWW.XXX.CN/STU        | 2019-08-04 15:30:20  |
| 192.168.33.3   | HTTP://WWW.XXX.CN/TEACH      | 2019-08-04 15:35:20  |
| 192.168.33.4   | HTTP://WWW.XXX.CN/STU        | 2019-08-04 15:30:20  |
| 192.168.33.4   | HTTP://WWW.XXX.CN/JOB        | 2019-08-04 16:30:20  |
| 192.168.33.5   | HTTP://WWW.XXX.CN/JOB        | 2019-08-04 15:40:20  |
| 192.168.33.3   | HTTP://WWW.XXX.CN/STU        | 2019-08-05 15:30:20  |
| 192.168.44.3   | HTTP://WWW.XXX.CN/TEACH      | 2019-08-05 15:35:20  |
| 192.168.33.44  | HTTP://WWW.XXX.CN/STU        | 2019-08-05 15:30:20  |
| 192.168.33.46  | HTTP://WWW.XXX.CN/JOB        | 2019-08-05 16:30:20  |
| 192.168.33.55  | HTTP://WWW.XXX.CN/JOB        | 2019-08-05 15:40:20  |
| 192.168.133.3  | HTTP://WWW.XXX.CN/REGISTER   | 2019-08-06 15:30:20  |
| 192.168.111.3  | HTTP://WWW.XXX.CN/REGISTER   | 2019-08-06 15:35:20  |
| 192.168.34.44  | HTTP://WWW.XXX.CN/PAY        | 2019-08-06 15:30:20  |
| 192.168.33.46  | HTTP://WWW.XXX.CN/EXCERSIZE  | 2019-08-06 16:30:20  |
| 192.168.33.55  | HTTP://WWW.XXX.CN/JOB        | 2019-08-06 15:40:20  |
| 192.168.33.46  | HTTP://WWW.XXX.CN/EXCERSIZE  | 2019-08-06 16:30:20  |
| 192.168.33.25  | HTTP://WWW.XXX.CN/JOB        | 2019-08-06 15:40:20  |
| 192.168.33.36  | HTTP://WWW.XXX.CN/EXCERSIZE  | 2019-08-06 16:30:20  |
| 192.168.33.55  | HTTP://WWW.XXX.CN/JOB        | 2019-08-06 15:40:20  |
+----------------+------------------------------+----------------------+--+
求每条url的访问次数
select url ,count(1) --对分好组的数据进行逐行运算
from t_pv
group by url;
0: jdbc:hive2://Master:10000> select url ,count(1)
0: jdbc:hive2://Master:10000> from t_pv
0: jdbc:hive2://Master:10000> group by url;
·····
+------------------------------+------+--+
|             url              | _c1  |
+------------------------------+------+--+
| http://www.xxx.cn/excersize  | 3    |
| http://www.xxx.cn/job        | 7    |
| http://www.xxx.cn/pay        | 1    |
| http://www.xxx.cn/register   | 2    |
| http://www.xxx.cn/stu        | 4    |
| http://www.xxx.cn/teach      | 2    |
+------------------------------+------+--+

可以给_c1加入字段名称:

select url ,count(1) as count
from t_pv
group by url;
求每个页面的访问者中ip最大的一个
select url,max(ip)
from t_pv
group by url;
0: jdbc:hive2://Master:10000> select url,max(ip)
0: jdbc:hive2://Master:10000> from t_pv
0: jdbc:hive2://Master:10000> group by url;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
+------------------------------+----------------+--+
|             url              |      _c1       |
+------------------------------+----------------+--+
| http://www.xxx.cn/excersize  | 192.168.33.46  |
| http://www.xxx.cn/job        | 192.168.33.55  |
| http://www.xxx.cn/pay        | 192.168.34.44  |
| http://www.xxx.cn/register   | 192.168.133.3  |
| http://www.xxx.cn/stu        | 192.168.33.44  |
| http://www.xxx.cn/teach      | 192.168.44.3   |
+------------------------------+----------------+--+
求每个用户访问同一个页面的所有记录中,时间最晚的一条
select ip,url,max(time)
from t_pv
group by ip,url;
0: jdbc:hive2://Master:10000> select ip,url,max(time)
0: jdbc:hive2://Master:10000> from t_pv
0: jdbc:hive2://Master:10000> group by ip,url;
.....
+----------------+------------------------------+----------------------+--+
|       ip       |             url              |         _c2          |
+----------------+------------------------------+----------------------+--+
| 192.168.111.3  | http://www.xxx.cn/register   | 2019-08-06 15:35:20  |
| 192.168.133.3  | http://www.xxx.cn/register   | 2019-08-06 15:30:20  |
| 192.168.33.25  | http://www.xxx.cn/job        | 2019-08-06 15:40:20  |
| 192.168.33.3   | http://www.xxx.cn/stu        | 2019-08-05 15:30:20  |
| 192.168.33.3   | http://www.xxx.cn/teach      | 2019-08-04 15:35:20  |
| 192.168.33.36  | http://www.xxx.cn/excersize  | 2019-08-06 16:30:20  |
| 192.168.33.4   | http://www.xxx.cn/job        | 2019-08-04 16:30:20  |
| 192.168.33.4   | http://www.xxx.cn/stu        | 2019-08-04 15:30:20  |
| 192.168.33.44  | http://www.xxx.cn/stu        | 2019-08-05 15:30:20  |
| 192.168.33.46  | http://www.xxx.cn/excersize  | 2019-08-06 16:30:20  |
| 192.168.33.46  | http://www.xxx.cn/job        | 2019-08-05 16:30:20  |
| 192.168.33.5   | http://www.xxx.cn/job        | 2019-08-04 15:40:20  |
| 192.168.33.55  | http://www.xxx.cn/job        | 2019-08-06 15:40:20  |
| 192.168.34.44  | http://www.xxx.cn/pay        | 2019-08-06 15:30:20  |
| 192.168.44.3   | http://www.xxx.cn/teach      | 2019-08-05 15:35:20  |
+----------------+------------------------------+----------------------+--+
求8月4号以后,每天http://www.xxx.cn/job的总访问...,及访问者中ip地址中最大的
select dt,"http://www.xxx.cn/job",count(1),max(ip)
from t_pv
where url="http://www.xxx.cn/job"
group by dt having dt>"2019-08-04";


select dt,max(url),count(1),max(ip)
from t_pv
where url="http://www.xxx.cn/job"
group by dt having dt>"2019-08-04";


select dt,url,count(1),max(ip)
from t_pv
where url="http://www.xxx.cn/job"
group by dt,url having dt>"2019-08-04";



select dt,url,count(1),max(ip)
from t_pv
where url="http://www.xxx.cn/job" and dt>"2019-08-04"
group by dt,url;
求8月4号以后,每天每个页面的总访问次数,及访问者中ip地址中最大的
select dt,url,count(1),max(ip)
from t_pv
where dt>"2019-08-04"
group by dt,url;
求8月4号以后,每天每个页面的总访问次数,及访问者中ip地址中最大的,且只查询出总访问次数>2 的记录

方式1:

select dt,url,count(1) as cnts,max(ip)
from t_pv
where dt>"2019-08-04"
group by dt,url having cnts>2;

方式2:用子查询

select dt,url,cnts,max_ip
from
(select dt,url,count(1) as cnts,max(ip) as max_ip
from t_pv
where dt>"2019-08-04"
group by dt,url) tmp
where cnts>2;
5 基本数据类型 5.1 数字类型

TINYINT (1-byte signed integer, from -128 to 127)

SMALLINT (2-byte signed integer, from -32,768 to 32,767)

INT/INTEGER (4-byte signed integer, from -2,147,483,648 to 2,147,483,647)

BIGINT (8-byte signed integer, from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807)

FLOAT (4-byte single precision floating point number)

DOUBLE (8-byte double precision floating point number)

示例:

create table t_test(a string ,b int,c bigint,d float,e double,f tinyint,g smallint)
5.2 日期类型

TIMESTAMP (Note: Only available starting with Hive 0.8.0)

DATE (Note: Only available starting with Hive 0.12.0)

示例,假如有以下数据文件:

1,zhangsan,1985-06-30
2,lisi,1986-07-10
3,wangwu,1985-08-09

那么,就可以建一个表来对数据进行映射

create table t_customer(id int,name string,birthday date)
row format delimited fields terminated by ",";

然后导入数据

load data local inpath "/root/customer.dat" into table t_customer;

然后,就可以正确查询

5.3 字符串类型

STRING

VARCHAR (Note: Only available starting with Hive 0.12.0)

CHAR (Note: Only available starting with Hive 0.13.0)

5.4 杂类型

BOOLEAN

BINARY (Note: Only available starting with Hive 0.8.0)

5.5 复合类型 5.5.1 数组类型

有如下数据:

玩具总动员4,汤姆·汉克斯:蒂姆·艾伦:安妮·波茨,2019-06-21
流浪地球,屈楚萧:吴京:李光洁:吴孟达,2019-02-05
千与千寻,柊瑠美:入野自由:夏木真理:菅原文太,2019-06-21
战狼2,吴京:弗兰克·格里罗:吴刚:张翰:卢靖姗,2017-08-16

建表导入数据:

--建表映射:
create table t_movie(movie_name string,actors array,first_show date)
row format delimited fields terminated by ","
collection items terminated by ":";

--导入数据
load data local inpath "/home/hadoop/actor.dat" into table t_movie;
0: jdbc:hive2://Master:10000> select * from t_movie;
+---------------------+-----------------------------------+---------------------+--+
| t_movie.movie_name  |          t_movie.actors           | t_movie.first_show  |
+---------------------+-----------------------------------+---------------------+--+
| 玩具总动员4              | ["汤姆·汉克斯","蒂姆·艾伦","安妮·波茨"]        | 2019-06-21          |
| 流浪地球                | ["屈楚萧","吴京","李光洁","吴孟达"]          | 2019-02-05          |
| 千与千寻                | ["柊瑠美","入野自由","夏木真理","菅原文太"]      | 2019-06-21          |
| 战狼2                 | ["吴京","弗兰克·格里罗","吴刚","张翰","卢靖姗"]  | 2017-08-16          |
+---------------------+-----------------------------------+---------------------+--+
array[]
查询每部电影主演
select movie_name,actors[0],first_show from t_movie;
0: jdbc:hive2://Master:10000> select movie_name,actors[0],first_show from t_movie;
+-------------+---------+-------------+--+
| movie_name  |   _c1   | first_show  |
+-------------+---------+-------------+--+
| 玩具总动员4      | 汤姆·汉克斯  | 2019-06-21  |
| 流浪地球        | 屈楚萧     | 2019-02-05  |
| 千与千寻        | 柊瑠美     | 2019-06-21  |
| 战狼2         | 吴京      | 2017-08-16  |
+-------------+---------+-------------+--+
array_contains
查询包含"吴京"的电影
select movie_name,actors,first_show
from t_movie where array_contains(actors,"吴京");
0: jdbc:hive2://Master:10000> select movie_name,actors,first_show
0: jdbc:hive2://Master:10000> from t_movie where array_contains(actors,"吴京");
+-------------+-----------------------------------+-------------+--+
| movie_name  |              actors               | first_show  |
+-------------+-----------------------------------+-------------+--+
| 流浪地球        | ["屈楚萧","吴京","李光洁","吴孟达"]          | 2019-02-05  |
| 战狼2         | ["吴京","弗兰克·格里罗","吴刚","张翰","卢靖姗"]  | 2017-08-16  |
+-------------+-----------------------------------+-------------+--+
size
每部电影查询列出的演员数量
select movie_name
,size(actors) as actor_number
,first_show
from t_movie;
0: jdbc:hive2://Master:10000> from t_movie;
+-------------+---------------+-------------+--+
| movie_name  | actor_number  | first_show  |
+-------------+---------------+-------------+--+
| 玩具总动员4      | 3             | 2019-06-21  |
| 流浪地球        | 4             | 2019-02-05  |
| 千与千寻        | 4             | 2019-06-21  |
| 战狼2         | 5             | 2017-08-16  |
+-------------+---------------+-------------+--+
5.5.2 map类型
数据
1,zhangsan,father:xiaoming#mother:xiaohuang#brother:xiaoxu,28
2,lisi,father:mayun#mother:huangyi#brother:guanyu,22
3,wangwu,father:wangjianlin#mother:ruhua#sister:jingtian,29
4,mayun,father:mayongzhen#mother:angelababy,26

导入数据

-- 建表映射上述数据
create table t_family(id int,name string,family_members map,age int)
row format delimited fields terminated by ","
collection items terminated by "#"
map keys terminated by ":";

-- 导入数据
load data local inpath "/root/hivetest/fm.dat" into table t_family;
0: jdbc:hive2://Master:10000> select * from t_family;
+--------------+----------------+----------------------------------------------------------------+---------------+--+
| t_family.id  | t_family.name  |                    t_family.family_members                     | t_family.age  |
+--------------+----------------+----------------------------------------------------------------+---------------+--+
| 1            | zhangsan       | {"father":"xiaoming","mother":"xiaohuang","brother":"xiaoxu"}  | 28            |
| 2            | lisi           | {"father":"mayun","mother":"huangyi","brother":"guanyu"}       | 22            |
| 3            | wangwu         | {"father":"wangjianlin","mother":"ruhua","sister":"jingtian"}  | 29            |
| 4            | mayun          | {"father":"mayongzhen","mother":"angelababy"}                  | 26            |
+--------------+----------------+----------------------------------------------------------------+---------------+--+
查出每个人的 爸爸、姐妹
select id,name,family_members["father"] as father,family_members["sister"] as sister,age
from t_family;
查出每个人有哪些亲属关系
select id,name,map_keys(family_members) as relations,age
from  t_family;
查出每个人的亲人名字
select id,name,map_values(family_members) as relations,age
from  t_family;
查出每个人的亲人数量
select id,name,size(family_members) as relations,age
from  t_family;
查出所有拥有兄弟的人及他的兄弟是谁
-- 方案1:一句话写完
select id,name,age,family_members["brother"]
from t_family  where array_contains(map_keys(family_members),"brother");


-- 方案2:子查询
select id,name,age,family_members["brother"]
from
(select id,name,age,map_keys(family_members) as relations,family_members 
from t_family) tmp 
where array_contains(relations,"brother");
5.5.3 stuct类型

数据

1,zhangsan,18:male:深圳
2,lisi,28:female:北京
3,wangwu,38:male:广州
4,laowang,26:female:上海
5,yangyang,35:male:杭州

导入数据:

-- 建表映射上述数据

drop table if exists t_user;
create table t_user(id int,name string,info struct)
row format delimited fields terminated by ","
collection items terminated by ":";

-- 导入数据
load data local inpath "/home/hadoop/user.dat" into table t_user;
0: jdbc:hive2://Master:10000> select * from t_user;
+------------+--------------+----------------------------------------+--+
| t_user.id  | t_user.name  |              t_user.info               |
+------------+--------------+----------------------------------------+--+
| 1          | zhangsan     | {"age":18,"sex":"male","addr":"深圳"}    |
| 2          | lisi         | {"age":28,"sex":"female","addr":"北京"}  |
| 3          | wangwu       | {"age":38,"sex":"male","addr":"广州"}    |
| 4          | laowang      | {"age":26,"sex":"female","addr":"上海"}  |
| 5          | yangyang     | {"age":35,"sex":"male","addr":"杭州"}    |
+------------+--------------+----------------------------------------+--+
查询每个人的id name和地址
select id,name,info.addr
from t_user;
0: jdbc:hive2://Master:10000> select id,name,info.addr
0: jdbc:hive2://Master:10000> from t_user;
+-----+-----------+-------+--+
| id  |   name    | addr  |
+-----+-----------+-------+--+
| 1   | zhangsan  | 深圳    |
| 2   | lisi      | 北京    |
| 3   | wangwu    | 广州    |
| 4   | laowang   | 上海    |
| 5   | yangyang  | 杭州    |
+-----+-----------+-------+--+
6 常用内置函数

测试函数

select substr("abcdef",1,3);
0: jdbc:hive2://Master:10000> select substr("abcdef",1,3);
+------+--+
| _c0  |
+------+--+
| abc  |
+------+--+
6.1 时间处理函数
from_unixtime(21938792183,"yyyy-MM-dd HH:mm:ss") 

返回: "2017-06-03 17:50:30"

6.2 类型转换函数
select cast("8" as int);
select cast("2019-2-3" as data)
6.3 字符串截取和拼接
substr("abcde",1,3)  -->   "abc"
concat("abc","def")  -->  "abcdef"
0: jdbc:hive2://Master:10000> select substr("abcde",1,3);
+------+--+
| _c0  |
+------+--+
| abc  |
+------+--+
1 row selected (0.152 seconds)
0: jdbc:hive2://Master:10000> select concat("abc","def");
+---------+--+
|   _c0   |
+---------+--+
| abcdef  |
+---------+--+
1 row selected (0.165 seconds)
6.4 Json数据解析函数
get_json_object("{"key1":3333,"key2":4444}" , "$.key1") 

返回:3333

json_tuple("{"key1":3333,"key2":4444}","key1","key2") as(key1,key2)

返回:3333, 4444

6.5 url解析函数
parse_url_tuple("http://www.xxxx.cn/bigdata?userid=8888","HOST","PATH","QUERY","QUERY:userid")

返回: www.xxxx.cn /bigdata userid=8888 8888

7 自定义函数 7.1 问题

测试数据如下:

1,zhangsan:18-1999063117:30:00-beijing
2,lisi:28-1989063117:30:00-shanghai
3,wangwu:20-1997063117:30:00-tieling

建表导入数据:

create table t_user_info(info string)
row format delimited;

导入数据:

load data local inpath "/root/udftest.data" into table t_user_info;

需求:利用上表生成如下新表

t_user:uid,uname,age,birthday,address

思路:可以自定义一个函数parse_user_info(),能传入一行上述数据,返回切分好的字段

然后可以通过如下sql完成需求:

create t_user
as
select 
parse_user_info(info,0) as uid,
parse_user_info(info,1) as uname,
parse_user_info(info,2) as age,
parse_user_info(info,3) as birthday_date,
parse_user_info(info,4) as birthday_time,
parse_user_info(info,5) as address
from t_user_info;

实现关键: 自定义parse_user_info() 函数

7.2 实现步骤

1、写一个java类实现函数所需要的功能

public class UserInfoParser extends UDF{    
    // 1,zhangsan:18-1999063117:30:00-beijing
    public String evaluate(String line,int index) {
        String newLine = line.replaceAll(",", "01").replaceAll(":", "01").replaceAll("-", "01");
        StringBuilder sb = new StringBuilder();
        String[] split = newLine.split("01");
        StringBuilder append = sb.append(split[0])
        .append("	")
        .append(split[1])
        .append("	")
        .append(split[2])
        .append("	")
        .append(split[3].substring(0, 8))
        .append("	")
        .append(split[3].substring(8, 10)).append(split[4]).append(split[5])
        .append("	")
        .append(split[6]);
        
        String res = append.toString();

        return res.split("	")[index];
    }
}

2、将java类打成jar包: d:/up.jar

3、上传jar包到hive所在的机器上 /root/up.jar

4、在hive的提示符中添加jar包

hive>  add jar /root/up.jar;

5、创建一个hive的自定义函数名 跟 写好的jar包中的java类对应

hive>  create temporary function parse_user_info as "com.doit.hive.udf.UserInfoParser";

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/36047.html

相关文章

  • 大数据入门指南(GitHub开源项目)

    摘要:项目地址前言大数据技术栈思维导图大数据常用软件安装指南一分布式文件存储系统分布式计算框架集群资源管理器单机伪集群环境搭建集群环境搭建常用命令的使用基于搭建高可用集群二简介及核心概念环境下的安装部署和命令行的基本使用常用操作分区表和分桶表视图 项目GitHub地址:https://github.com/heibaiying... 前 言 大数据技术栈思维导图 大数据常用软件安装指...

    guyan0319 评论0 收藏0
  • Hive+Sqoop浅度学习指南

    摘要:业务需求统计每小时的数数据采集数据清洗用来描述将数据从来源端经过抽取转换加载至目的端的过程字段过滤字段补全用户信息商品信息字段格式化数据分析将数据导出介绍由开源的用于解决海量结构化日志的数据统计的项目本质将转化为程序的其实时上的目录和 业务 需求:统计每小时的PV数 数据采集 hdfs hive 数据清洗(ETL) 用来描述将数据从来源端经过抽取(extract)、转换(trans...

    Kahn 评论0 收藏0

发表评论

0条评论

MyFaith

|高级讲师

TA的文章

阅读更多
最新活动
阅读需要支付1元查看
<