资讯专栏INFORMATION COLUMN

k8s与监控--解读prometheus监控kubernetes的配置文件

UCloud / 3118人阅读

摘要:前言是一个开源和社区驱动的监控报警时序数据库的项目。集群上部署的应用监控部署在集群上的应用。通过和的接口采集。相应,配置文件官方也提供了一份,今天我们就解读一下该配置文件。对于服务的终端节点,也需要加注解,为则会将作为监控目标。

前言

Prometheus 是一个开源和社区驱动的监控&报警&时序数据库的项目。来源于谷歌BorgMon项目。现在最常见的Kubernetes容器管理系统中,通常会搭配Prometheus进行监控。主要监控:

Node:如主机CPU,内存,网络吞吐和带宽占用,磁盘I/O和磁盘使用等指标。node-exporter采集。

容器关键指标:集群中容器的CPU详细状况,内存详细状况,Network,FileSystem和Subcontainer等。通过cadvisor采集。

Kubernetes集群上部署的应用:监控部署在Kubernetes集群上的应用。主要是pod,service,ingress和endpoint。通过black-box和kube-apiserver的接口采集。

prometheus自身提供了一些资源的自动发现功能,下面是我从官方github上截图,罗列了目前提供的资源发现:

由上图可知prometheus自身提供了自动发现kubernetes的监控目标的功能。相应,配置文件官方也提供了一份,今天我们就解读一下该配置文件。

配置文件解读

首先直接上官方的配置文件:

# A scrape configuration for running Prometheus on a Kubernetes cluster.
# This uses separate scrape configs for cluster components (i.e. API server, node)
# and services to allow each to use different authentication configs.
#
# Kubernetes labels will be added as Prometheus labels on metrics via the
# `labelmap` relabeling action.
#
# If you are using Kubernetes 1.7.2 or earlier, please take note of the comments
# for the kubernetes-cadvisor job; you will need to edit or remove this job.

# Scrape config for API servers.
#
# Kubernetes exposes API servers as endpoints to the default/kubernetes
# service so this uses `endpoints` role and uses relabelling to only keep
# the endpoints associated with the default/kubernetes service using the
# default named port `https`. This works for single API server deployments as
# well as HA API server deployments.
scrape_configs:
- job_name: "kubernetes-apiservers"

  kubernetes_sd_configs:
  - role: endpoints

  # Default to scraping over https. If required, just disable this or change to
  # `http`.
  scheme: https

  # This TLS & bearer token file config is used to connect to the actual scrape
  # endpoints for cluster components. This is separate to discovery auth
  # configuration because discovery & scraping are two separate concerns in
  # Prometheus. The discovery auth config is automatic if Prometheus runs inside
  # the cluster. Otherwise, more config options have to be provided within the
  # .
  tls_config:
    ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
    # If your node certificates are self-signed or use a different CA to the
    # master CA, then disable certificate verification below. Note that
    # certificate verification is an integral part of a secure infrastructure
    # so this should only be disabled in a controlled environment. You can
    # disable certificate verification by uncommenting the line below.
    #
    # insecure_skip_verify: true
  bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token

  # Keep only the default/kubernetes service endpoints for the https port. This
  # will add targets for each API server which Kubernetes adds an endpoint to
  # the default/kubernetes service.
  relabel_configs:
  - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
    action: keep
    regex: default;kubernetes;https

# Scrape config for nodes (kubelet).
#
# Rather than connecting directly to the node, the scrape is proxied though the
# Kubernetes apiserver.  This means it will work if Prometheus is running out of
# cluster, or can"t connect to nodes for some other reason (e.g. because of
# firewalling).
- job_name: "kubernetes-nodes"

  # Default to scraping over https. If required, just disable this or change to
  # `http`.
  scheme: https

  # This TLS & bearer token file config is used to connect to the actual scrape
  # endpoints for cluster components. This is separate to discovery auth
  # configuration because discovery & scraping are two separate concerns in
  # Prometheus. The discovery auth config is automatic if Prometheus runs inside
  # the cluster. Otherwise, more config options have to be provided within the
  # .
  tls_config:
    ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
  bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token

  kubernetes_sd_configs:
  - role: node

  relabel_configs:
  - action: labelmap
    regex: __meta_kubernetes_node_label_(.+)
  - target_label: __address__
    replacement: kubernetes.default.svc:443
  - source_labels: [__meta_kubernetes_node_name]
    regex: (.+)
    target_label: __metrics_path__
    replacement: /api/v1/nodes/${1}/proxy/metrics

# Scrape config for Kubelet cAdvisor.
#
# This is required for Kubernetes 1.7.3 and later, where cAdvisor metrics
# (those whose names begin with "container_") have been removed from the
# Kubelet metrics endpoint.  This job scrapes the cAdvisor endpoint to
# retrieve those metrics.
#
# In Kubernetes 1.7.0-1.7.2, these metrics are only exposed on the cAdvisor
# HTTP endpoint; use "replacement: /api/v1/nodes/${1}:4194/proxy/metrics"
# in that case (and ensure cAdvisor"s HTTP server hasn"t been disabled with
# the --cadvisor-port=0 Kubelet flag).
#
# This job is not necessary and should be removed in Kubernetes 1.6 and
# earlier versions, or it will cause the metrics to be scraped twice.
- job_name: "kubernetes-cadvisor"

  # Default to scraping over https. If required, just disable this or change to
  # `http`.
  scheme: https

  # This TLS & bearer token file config is used to connect to the actual scrape
  # endpoints for cluster components. This is separate to discovery auth
  # configuration because discovery & scraping are two separate concerns in
  # Prometheus. The discovery auth config is automatic if Prometheus runs inside
  # the cluster. Otherwise, more config options have to be provided within the
  # .
  tls_config:
    ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
  bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token

  kubernetes_sd_configs:
  - role: node

  relabel_configs:
  - action: labelmap
    regex: __meta_kubernetes_node_label_(.+)
  - target_label: __address__
    replacement: kubernetes.default.svc:443
  - source_labels: [__meta_kubernetes_node_name]
    regex: (.+)
    target_label: __metrics_path__
    replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor

# Scrape config for service endpoints.
#
# The relabeling allows the actual service scrape endpoint to be configured
# via the following annotations:
#
# * `prometheus.io/scrape`: Only scrape services that have a value of `true`
# * `prometheus.io/scheme`: If the metrics endpoint is secured then you will need
# to set this to `https` & most likely set the `tls_config` of the scrape config.
# * `prometheus.io/path`: If the metrics path is not `/metrics` override this.
# * `prometheus.io/port`: If the metrics are exposed on a different port to the
# service then set this appropriately.
- job_name: "kubernetes-service-endpoints"

  kubernetes_sd_configs:
  - role: endpoints

  relabel_configs:
  - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
    action: keep
    regex: true
  - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
    action: replace
    target_label: __scheme__
    regex: (https?)
  - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
    action: replace
    target_label: __metrics_path__
    regex: (.+)
  - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
    action: replace
    target_label: __address__
    regex: ([^:]+)(?::d+)?;(d+)
    replacement: $1:$2
  - action: labelmap
    regex: __meta_kubernetes_service_label_(.+)
  - source_labels: [__meta_kubernetes_namespace]
    action: replace
    target_label: kubernetes_namespace
  - source_labels: [__meta_kubernetes_service_name]
    action: replace
    target_label: kubernetes_name

# Example scrape config for probing services via the Blackbox Exporter.
#
# The relabeling allows the actual service scrape endpoint to be configured
# via the following annotations:
#
# * `prometheus.io/probe`: Only probe services that have a value of `true`
- job_name: "kubernetes-services"

  metrics_path: /probe
  params:
    module: [http_2xx]

  kubernetes_sd_configs:
  - role: service

  relabel_configs:
  - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_probe]
    action: keep
    regex: true
  - source_labels: [__address__]
    target_label: __param_target
  - target_label: __address__
    replacement: blackbox-exporter.example.com:9115
  - source_labels: [__param_target]
    target_label: instance
  - action: labelmap
    regex: __meta_kubernetes_service_label_(.+)
  - source_labels: [__meta_kubernetes_namespace]
    target_label: kubernetes_namespace
  - source_labels: [__meta_kubernetes_service_name]
    target_label: kubernetes_name

# Example scrape config for probing ingresses via the Blackbox Exporter.
#
# The relabeling allows the actual ingress scrape endpoint to be configured
# via the following annotations:
#
# * `prometheus.io/probe`: Only probe services that have a value of `true`
- job_name: "kubernetes-ingresses"

  metrics_path: /probe
  params:
    module: [http_2xx]

  kubernetes_sd_configs:
    - role: ingress

  relabel_configs:
    - source_labels: [__meta_kubernetes_ingress_annotation_prometheus_io_probe]
      action: keep
      regex: true
    - source_labels: [__meta_kubernetes_ingress_scheme,__address__,__meta_kubernetes_ingress_path]
      regex: (.+);(.+);(.+)
      replacement: ${1}://${2}${3}
      target_label: __param_target
    - target_label: __address__
      replacement: blackbox-exporter.example.com:9115
    - source_labels: [__param_target]
      target_label: instance
    - action: labelmap
      regex: __meta_kubernetes_ingress_label_(.+)
    - source_labels: [__meta_kubernetes_namespace]
      target_label: kubernetes_namespace
    - source_labels: [__meta_kubernetes_ingress_name]
      target_label: kubernetes_name

# Example scrape config for pods
#
# The relabeling allows the actual pod scrape endpoint to be configured via the
# following annotations:
#
# * `prometheus.io/scrape`: Only scrape pods that have a value of `true`
# * `prometheus.io/path`: If the metrics path is not `/metrics` override this.
# * `prometheus.io/port`: Scrape the pod on the indicated port instead of the
# pod"s declared ports (default is a port-free target if none are declared).
- job_name: "kubernetes-pods"

  kubernetes_sd_configs:
  - role: pod

  relabel_configs:
  - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
    action: keep
    regex: true
  - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
    action: replace
    target_label: __metrics_path__
    regex: (.+)
  - source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port]
    action: replace
    regex: ([^:]+)(?::d+)?;(d+)
    replacement: $1:$2
    target_label: __address__
  - action: labelmap
    regex: __meta_kubernetes_pod_label_(.+)
  - source_labels: [__meta_kubernetes_namespace]
    action: replace
    target_label: kubernetes_namespace
  - source_labels: [__meta_kubernetes_pod_name]
    action: replace
    target_label: kubernetes_pod_name

当然该配置文件,是在prometheus部署在k8s中生效的,即in-cluster模式。

kubernetes-apiservers

该项主要是让prometheus程序可以访问kube-apiserver,进而进行服务发现。看一下服务发现的代码可以看出,主要服务发现:node,service,ingress,pod。

    switch d.role {
    case "endpoints":
        var wg sync.WaitGroup

        for _, namespace := range namespaces {
            elw := cache.NewListWatchFromClient(rclient, "endpoints", namespace, nil)
            slw := cache.NewListWatchFromClient(rclient, "services", namespace, nil)
            plw := cache.NewListWatchFromClient(rclient, "pods", namespace, nil)
            eps := NewEndpoints(
                log.With(d.logger, "role", "endpoint"),
                cache.NewSharedInformer(slw, &apiv1.Service{}, resyncPeriod),
                cache.NewSharedInformer(elw, &apiv1.Endpoints{}, resyncPeriod),
                cache.NewSharedInformer(plw, &apiv1.Pod{}, resyncPeriod),
            )
            go eps.endpointsInf.Run(ctx.Done())
            go eps.serviceInf.Run(ctx.Done())
            go eps.podInf.Run(ctx.Done())

            for !eps.serviceInf.HasSynced() {
                time.Sleep(100 * time.Millisecond)
            }
            for !eps.endpointsInf.HasSynced() {
                time.Sleep(100 * time.Millisecond)
            }
            for !eps.podInf.HasSynced() {
                time.Sleep(100 * time.Millisecond)
            }
            wg.Add(1)
            go func() {
                defer wg.Done()
                eps.Run(ctx, ch)
            }()
        }
        wg.Wait()
    case "pod":
        var wg sync.WaitGroup
        for _, namespace := range namespaces {
            plw := cache.NewListWatchFromClient(rclient, "pods", namespace, nil)
            pod := NewPod(
                log.With(d.logger, "role", "pod"),
                cache.NewSharedInformer(plw, &apiv1.Pod{}, resyncPeriod),
            )
            go pod.informer.Run(ctx.Done())

            for !pod.informer.HasSynced() {
                time.Sleep(100 * time.Millisecond)
            }
            wg.Add(1)
            go func() {
                defer wg.Done()
                pod.Run(ctx, ch)
            }()
        }
        wg.Wait()
    case "service":
        var wg sync.WaitGroup
        for _, namespace := range namespaces {
            slw := cache.NewListWatchFromClient(rclient, "services", namespace, nil)
            svc := NewService(
                log.With(d.logger, "role", "service"),
                cache.NewSharedInformer(slw, &apiv1.Service{}, resyncPeriod),
            )
            go svc.informer.Run(ctx.Done())

            for !svc.informer.HasSynced() {
                time.Sleep(100 * time.Millisecond)
            }
            wg.Add(1)
            go func() {
                defer wg.Done()
                svc.Run(ctx, ch)
            }()
        }
        wg.Wait()
    case "ingress":
        var wg sync.WaitGroup
        for _, namespace := range namespaces {
            ilw := cache.NewListWatchFromClient(reclient, "ingresses", namespace, nil)
            ingress := NewIngress(
                log.With(d.logger, "role", "ingress"),
                cache.NewSharedInformer(ilw, &extensionsv1beta1.Ingress{}, resyncPeriod),
            )
            go ingress.informer.Run(ctx.Done())

            for !ingress.informer.HasSynced() {
                time.Sleep(100 * time.Millisecond)
            }
            wg.Add(1)
            go func() {
                defer wg.Done()
                ingress.Run(ctx, ch)
            }()
        }
        wg.Wait()
    case "node":
        nlw := cache.NewListWatchFromClient(rclient, "nodes", api.NamespaceAll, nil)
        node := NewNode(
            log.With(d.logger, "role", "node"),
            cache.NewSharedInformer(nlw, &apiv1.Node{}, resyncPeriod),
        )
        go node.informer.Run(ctx.Done())

        for !node.informer.HasSynced() {
            time.Sleep(100 * time.Millisecond)
        }
        node.Run(ctx, ch)

    default:
        level.Error(d.logger).Log("msg", "unknown Kubernetes discovery kind", "role", d.role)
    }   
kubernetes-nodes

发现node以后,通过/api/v1/nodes/${1}/proxy/metrics来获取node的metrics。

kubernetes-cadvisor

cadvisor已经被集成在kubelet中,所以发现了node就相当于发现了cadvisor。通过 /api/v1/nodes/${1}/proxy/metrics/cadvisor采集容器指标。

kubernetes-services和kubernetes-ingresses

该两种资源监控方式差不多,都是需要安装black-box,然后类似于探针去定时访问,根据返回的http状态码来判定service和ingress的服务可用性。
PS:不过我自己在这里和官方的稍微有点区别,

- target_label: __address__
      replacement: blackbox-exporter.example.com:9115

官方大致是需要我们要创建black-box 的ingress从外部访问,这样从效率和安全性都不是最合适的。所以我一般都是直接内部dns访问。如下

- target_label: __address__
      replacement: blackbox-exporter.kube-system:9115

当然看源码可以发现,并不是所有的service和ingress都会健康监测,如果需要将服务进行健康监测,那么你部署应用的yaml文件加一些注解。例如:
对于service和ingress:
需要加注解:prometheus.io/scrape: "true"

apiVersion: v1
kind: Service
metadata:
  annotations:
    prometheus.io/scrape: "true"
  name: prometheus-node-exporter
  namespace: kube-system
  labels:
    app: prometheus
    component: node-exporter
spec:
  clusterIP: None
  ports:
    - name: prometheus-node-exporter
      port: 9100
      protocol: TCP
  selector:
    app: prometheus
    component: node-exporter
  type: ClusterIP
kubernetes-pods

对于pod的监测也是需要加注解:

prometheus.io/scrape,为true则会将pod作为监控目标。

prometheus.io/path,默认为/metrics

prometheus.io/port , 端口

所以看到此处可以看出,该job并不是监控pod的指标,pod已经通过前面的cadvisor采集。此处是对pod中应用的监控。写过exporter的人应该对这个概念非常清楚。通俗讲,就是你pod中的应用提供了prometheus的监控功能,加上对应的注解,那么该应用的metrics会定时被采集走。

kubernetes-service-endpoints

对于服务的终端节点,也需要加注解:

prometheus.io/scrape,为true则会将pod作为监控目标。

prometheus.io/path,默认为/metrics

prometheus.io/port , 端口

prometheus.io/scheme 默认http,如果为了安全设置了https,此处需要改为https

这个基本上同上的。采集service-endpoints的metrics。

个人认为:如果某些部署应用只有pod没有service,那么这种情况只能在pod上加注解,通过kubernetes-pods采集metrics。如果有service,那么就无需在pod加注解了,直接在service上加即可。毕竟service-endpoints最终也会落到pod上。

总结 配置项总结

kubernetes-service-endpoints和kubernetes-pods采集应用中metrics,当然并不是所有的都提供了metrics接口。

kubernetes-ingresses 和kubernetes-services 健康监测服务和ingress健康的状态

kubernetes-cadvisor 和 kubernetes-nodes,通过发现node,监控node 和容器的cpu等指标

自动发现源码

参考client-go和prometheus自动发现k8s,这种监听k8s集群中资源的变化,使用informer实现,不要轮询kube-apiserver接口。

参考

该配置文件需要部署一些组件来支持prometheus对k8s的监控,例如black-exporter。因为要自动发现,获取集群的一些信息,所以也要做rbac的授权。具体参考:
github

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/32635.html

相关文章

  • k8s监控--从kubernetes监控prometheusfederation机制

    摘要:也就是说整个监控系统不是部署在中。非的怎么监控是今天需要讨论的问题。官方给出的配置联邦机制也实现了的扩展。我们的集群外监控的方案就基于此。在同一个数据中心,每个监控其他的。上一级的监控数据中心级别的。 前言 有时候对于一个公司,k8s集群或是所谓的caas只是整个技术体系的一部分,往往这个时候监控系统不仅仅要k8s集群以及k8s中部署的应用,而且要监控传统部署的项目。也就是说整个监控系...

    wangym 评论0 收藏0
  • k8s监控--从kubernetes监控prometheusfederation机制

    摘要:也就是说整个监控系统不是部署在中。非的怎么监控是今天需要讨论的问题。官方给出的配置联邦机制也实现了的扩展。我们的集群外监控的方案就基于此。在同一个数据中心,每个监控其他的。上一级的监控数据中心级别的。 前言 有时候对于一个公司,k8s集群或是所谓的caas只是整个技术体系的一部分,往往这个时候监控系统不仅仅要k8s集群以及k8s中部署的应用,而且要监控传统部署的项目。也就是说整个监控系...

    curlyCheng 评论0 收藏0
  • 容器监控实践—Prometheus部署方案

    摘要:同时有权限控制日志审计整体配置过期时间等功能。将成为趋势前置条件要求的版本应该是因为和支持的限制的核心思想是将的部署与它监控的对象的配置分离,做到部署与监控对象的配置分离之后,就可以轻松实现动态配置。 一.单独部署 二进制安装各版本下载地址:https://prometheus.io/download/ Docker运行 运行命令:docker run --name promet...

    GeekQiaQia 评论0 收藏0
  • 容器监控实践—Prometheus配置服务发现

    摘要:一概述的配置可以用命令行参数或者配置文件,如果是在集群内,一般配置在中以下均为版本查看可用的命令行参数,可以执行也可以指定对应的配置文件,参数一般为如果配置有修改,如增添采集,可以重新加载它的配置。目前主要支持种服务发现模式,分别是。 本文将分析Prometheus的常见配置与服务发现,分为概述、配置详解、服务发现、常见场景四个部分进行讲解。 一. 概述 Prometheus的配置可以...

    longshengwang 评论0 收藏0
  • 容器监控实践—Prometheus配置服务发现

    摘要:一概述的配置可以用命令行参数或者配置文件,如果是在集群内,一般配置在中以下均为版本查看可用的命令行参数,可以执行也可以指定对应的配置文件,参数一般为如果配置有修改,如增添采集,可以重新加载它的配置。目前主要支持种服务发现模式,分别是。 本文将分析Prometheus的常见配置与服务发现,分为概述、配置详解、服务发现、常见场景四个部分进行讲解。 一. 概述 Prometheus的配置可以...

    hiyang 评论0 收藏0

发表评论

0条评论

UCloud

|高级讲师

TA的文章

阅读更多
最新活动
阅读需要支付1元查看
<