摘要:基于和容器的深度学习环境搭建云主机操作系统位安装安装如果没有,需安装安装安装有两种方式安装安装本文选择安装方式。
基于Nvidia GPU和Docker容器的深度学习环境搭建
GPU云主机:
操作系统:Ubuntu 16.04 64位
GPU: 1 x Nvidia Tesla P40
安装gcc、g++、make:
# sudo apt-get install gcc g++ make # gcc --version gcc (Ubuntu 5.4.0-6ubuntu1~16.04.10) 5.4.0 20160609 Copyright (C) 2015 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
如果没有,需安装linux-headers:
# sudo apt-get install linux-headers-$(uname -r)1.2 安装NVIDIA driver
CUDA安装有两种方式:
1.Package安装
2.Runfile安装
本文选择runfile安装方式。
首先禁用Nouveau:
# lsmod | grep nouveau nouveau 1495040 0 mxm_wmi16384 1 nouveau wmi20480 2 mxm_wmi,nouveau video 40960 1 nouveau i2c_algo_bit 16384 1 nouveau ttm94208 1 nouveau drm_kms_helper155648 1 nouveau drm 364544 3 ttm,drm_kms_helper,nouveau # vi /etc/modprobe.d/blacklist-nouveau.conf blacklist nouveau options nouveau modeset=0 # sudo update-initramfs -u update-initramfs: Generating /boot/initrd.img-4.4.0-62-generic W: mdadm: /etc/mdadm/mdadm.conf defines no arrays.
Reboot云主机:
# reboot
重启后check下Nouveau drivers没有被load:
# lsmod | grep nouveau #
登录:http://developer.nvidia.com/c... 下载相应的runfile:
# wget https://developer.nvidia.com/compute/cuda/10.0/Prod/local_installers/cuda_10.0.130_410.48_linux
开始安装CUDA Driver:
# chmod +x cuda_10.0.130_410.48_linux # sudo sh ./cuda_10.0.130_410.48_linux Logging to /tmp/cuda_install_1699.log Using more to view the EULA. Do you accept the previously read EULA? accept/decline/quit: accept Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 410.48? (y)es/(n)o/(q)uit: y Do you want to install the OpenGL libraries? (y)es/(n)o/(q)uit [ default is yes ]: y Do you want to run nvidia-xconfig? This will update the system X configuration file so that the NVIDIA X driver is used. The pre-existing X configuration file will be backed up. This option should not be used on systems that require a custom X configuration, such as systems with multiple GPU vendors. (y)es/(n)o/(q)uit [ default is no ]: Install the CUDA 10.0 Toolkit? (y)es/(n)o/(q)uit: y Enter Toolkit Location [ default is /usr/local/cuda-10.0 ]: Do you want to install a symbolic link at /usr/local/cuda? (y)es/(n)o/(q)uit: y Install the CUDA 10.0 Samples? (y)es/(n)o/(q)uit: y Enter CUDA Samples Location [ default is /root ]: Installing the NVIDIA display driver... Installing the CUDA Toolkit in /usr/local/cuda-10.0 ... Missing recommended library: libGLU.so Missing recommended library: libX11.so Missing recommended library: libXi.so Missing recommended library: libXmu.so Installing the CUDA Samples in /root ... Copying samples to /root/NVIDIA_CUDA-10.0_Samples now... Finished copying samples. =========== = Summary = =========== Driver: Installed Toolkit: Installed in /usr/local/cuda-10.0 Samples: Installed in /root, but missing recommended libraries Please make sure that - PATH includes /usr/local/cuda-10.0/bin - LD_LIBRARY_PATH includes /usr/local/cuda-10.0/lib64, or, add /usr/local/cuda-10.0/lib64 to /etc/ld.so.conf and run ldconfig as root To uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-10.0/bin To uninstall the NVIDIA Driver, run nvidia-uninstall Please see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-10.0/doc/pdf for detailed information on setting up CUDA. Logfile is /tmp/cuda_install_1699.log
安装成功!
Reboot云主机:
# reboot
设备验证:
# ls /dev/nvidia* ls: cannot access "/dev/nvidia*": No such file or directory # vi nvidia-probe.sh #!/bin/bash ### BEGIN INIT INFO # Provides: jd.com # Required-Start: $local_fs $network # Required-Stop: $local_fs # Default-Start: 2 3 4 5 # Default-Stop: 0 1 6 # Short-Description: nvidia service # Description: nvidia service daemon ### END INIT INFO /sbin/modprobe nvidia if [ "$?" -eq 0 ]; then # Count the number of NVIDIA controllers found. NVDEVS=`lspci | grep -i NVIDIA` N3D=`echo "$NVDEVS" | grep "3D controller" | wc -l` NVGA=`echo "$NVDEVS" | grep "VGA compatible controller" | wc -l` N=`expr $N3D + $NVGA - 1` for i in `seq 0 $N`; do mknod -m 666 /dev/nvidia$i c 195 $i done mknod -m 666 /dev/nvidiactl c 195 255 else exit 1 fi /sbin/modprobe nvidia-uvm if [ "$?" -eq 0 ]; then # Find out the major device number used by the nvidia-uvm driver D=`grep nvidia-uvm /proc/devices | awk "{print $1}"` mknod -m 666 /dev/nvidia-uvm c $D 0 else exit 1 fi # chmod +x nvidia-probe.sh # ./nvidia-probe.sh # ls /dev/nvidia* /dev/nvidia0 /dev/nvidiactl /dev/nvidia-uvm
/dev下成功发现设备!
配置开机自启动:
# cp nvidia-probe.sh /etc/init.d/ # sudo update-rc.d nvidia-probe.sh defaults 951.3 Post-installation Actions
配置环境变量:
# vi /etc/profile ...... export PATH=/usr/local/cuda-10.0/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
开机启动Persistence Daemon:
# vi /etc/rc.local ...... /usr/bin/nvidia-persistenced --verbose exit 01.4 CUDA driver验证
查看Driver Version:
# cat /proc/driver/nvidia/version NVRM version: NVIDIA UNIX x86_64 Kernel Module 410.48 Thu Sep 6 06:36:33 CDT 2018 GCC version: gcc version 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1~16.04.10)
使用deviceQuery示例验证:
# cd ~/NVIDIA_CUDA-10.0_Samples/1_Utilities/deviceQuery/ # make "/usr/local/cuda-10.0"/bin/nvcc -ccbin g++ -I../../common/inc -m64-gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_75,code=compute_75 -o deviceQuery.o -c deviceQuery.cpp "/usr/local/cuda-10.0"/bin/nvcc -ccbin g++ -m64 -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_75,code=compute_75 -o deviceQuery deviceQuery.o mkdir -p ../../bin/x86_64/linux/release cp deviceQuery ../../bin/x86_64/linux/release # cd ../../bin/x86_64/linux/release/ # ls deviceQuery # ./deviceQuery ./deviceQuery Starting... CUDA Device Query (Runtime API) version (CUDART static linking) Detected 1 CUDA Capable device(s) Device 0: "Tesla P40" CUDA Driver Version / Runtime Version 10.0 / 10.0 CUDA Capability Major/Minor version number:6.1 Total amount of global memory: 22919 MBytes (24032378880 bytes) (30) Multiprocessors, (128) CUDA Cores/MP: 3840 CUDA Cores GPU Max Clock rate:1531 MHz (1.53 GHz) Memory Clock rate: 3615 Mhz Memory Bus Width: 384-bit L2 Cache Size: 3145728 bytes Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384) Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size(x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 2 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory:No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces:Yes Device has ECC support:Enabled Device supports Unified Addressing (UVA): Yes Device supports Compute Preemption:Yes Supports Cooperative Kernel Launch:Yes Supports MultiDevice Co-op Kernel Launch: Yes Device PCI Domain ID / Bus ID / location ID: 0 / 0 / 7 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.0, CUDA Runtime Version = 10.0, NumDevs = 1 Result = PASS
参考:
https://github.com/NVIDIA/nvi...2. 安装Nvidia-docker 2.1 安装Dockerhttps://docs.nvidia.com/cuda/...
安装docker-ce:
#sudo apt-get remove docker docker-engine docker.io # sudo apt-get install apt-transport-https ca-certificates curl software-properties-common # curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add - # sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable" # sudo apt-get update # sudo apt-get install docker-ce # docker version Client: Version: 18.06.1-ce API version: 1.38 Go version:go1.10.3 Git commit:e68fc7a Built: Tue Aug 21 17:24:56 2018 OS/Arch: linux/amd64 Experimental: false Server: Engine: Version: 18.06.1-ce API version: 1.38 (minimum version 1.12) Go version: go1.10.3 Git commit: e68fc7a Built:Tue Aug 21 17:23:21 2018 OS/Arch: linux/amd64 Experimental: false2.2 安装nvidia-docker
安装nvidia-docker:
# Add the package repositories curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - distribution=$(. /etc/os-release;echo $ID$VERSION_ID) curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list sudo apt-get update # Install nvidia-docker2 and reload the Docker daemon configuration sudo apt-get install -y nvidia-docker2 sudo pkill -SIGHUP dockerd
验证nvidia-docker:
# docker run --runtime=nvidia --rm nvidia/cuda:9.0-base nvidia-smi Thu Oct 25 09:03:27 2018 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 410.48 Driver Version: 410.48| |-------------------------------+----------------------+----------------------+ | GPU NamePersistence-M| Bus-IdDisp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 Tesla P40 On | 00000000:00:07.0 Off |0 | | N/A 20CP8 9W / 250W | 0MiB / 22919MiB | 1% Default | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| | No running processes found | +-----------------------------------------------------------------------------+2.3 配置Docker默认runtime
cat /etc/docker/daemon.json
{ "default-runtime": "nvidia", "runtimes": { "nvidia": { "path": "nvidia-container-runtime", "runtimeArgs": [] } } }
重启服务:
# systemctl restart docker # systemctl status docker2.4 运行TensorFlow卷积神经Model
Docker运行:
# docker run --rm --name tensorflow -ti tensorflow/tensorflow:r0.9-devel-gpu root@bd0fb3758da2:~# python --version Python 2.7.6 root@bd0fb3758da2:~# python -m tensorflow.models.image.mnist.convolutional
参考:
https://docs.docker.com/insta...https://github.com/NVIDIA/nvi...
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/27508.html
摘要:阿里云推出国内首个基于英伟达的优化容器月日,在云栖大会深圳峰会上,阿里云宣布与英伟达云合作,开发者可以在云市场下载云镜像和运行容器,来使用阿里云上的计算平台。阿里云成为中国首家与加速的容器合作的云厂商。 摘要: 3月28日,在2018云栖大会·深圳峰会上,阿里云宣布与英伟达GPU 云 合作 (NGC),开发者可以在云市场下载NVIDIA GPU 云镜像和运行NGC 容器,来使用阿里云上...
摘要:你可以发布一个可再现的机器学习项目,它几乎不需要用户设置,不需要用户花小时去下载依赖或者报错相反,你可以这样做这种方法可以直接运行你的脚本,所有的依赖包括支持都帮你准备好了。应该怎么做针对机器学习的使用场景,你较好把你的代码发布到上。 Docker提供了一种将Linux Kernel中需要的内容静态链接到你的应用中的方法。Docker容器可以使用宿主机的GPUs,因此我们可以把TensorF...
阅读 2937·2021-10-08 10:18
阅读 706·2019-08-30 15:54
阅读 1035·2019-08-29 18:43
阅读 2408·2019-08-29 15:33
阅读 1276·2019-08-29 15:29
阅读 1583·2019-08-29 13:29
阅读 999·2019-08-26 13:46
阅读 1677·2019-08-26 11:55