摘要:二总结使用的和的,能够很好的支持这样的有状态服务部署到集群上。部署方式有待优化本次试验中使用静态方式部署集群,如果节点变迁时,需要执行等命令手动配置集群,严重限制了集群自动故障恢复扩容缩容的能力。
kubernetes通过statefulset为zookeeper、etcd等这类有状态的应用程序提供完善支持,statefulset具备以下特性:
为pod提供稳定的唯一的网络标识
稳定值持久化存储:通过pv/pvc来实现
启动和停止pod保证有序:优雅的部署和伸缩性
本文阐述了如何在k8s集群上部署zookeeper和etcd有状态服务,并结合ceph实现数据持久化。
二. 总结使用k8s的statefulset、storageclass、pv、pvc和ceph的rbd,能够很好的支持zookeeper、etcd这样的有状态服务部署到kubernetes集群上。
k8s不会主动删除已经创建的pv、pvc对象,防止出现误删。
如果用户确定删除pv、pvc对象,同时还需要手动删除ceph段的rbd镜像。
遇到的坑
storageclass中引用的ceph客户端用户,必须要有mon rw,rbd rwx权限。如果没有mon write权限,会导致释放rbd锁失败,无法将rbd镜像挂载到其他的k8s worker节点。
zookeeper使用探针检查zookeeper节点的健康状态,如果节点不健康,k8s将删除pod,并自动重建该pod,达到自动重启zookeeper节点的目的。
因zookeeper 3.4版本的集群配置,是通过静态加载文件zoo.cfg来实现的,所以当zookeeper节点pod ip变动后,需要重启zookeeper集群中的所有节点。
etcd部署方式有待优化
本次试验中使用静态方式部署etcd集群,如果etcd节点变迁时,需要执行etcdctl member remove/add等命令手动配置etcd集群,严重限制了etcd集群自动故障恢复、扩容缩容的能力。因此,需要考虑对部署方式优化,改为使用DNS或者etcd descovery的动态方式部署etcd,才能让etcd更好的运行在k8s上。
三. zookeeper集群部署 1. 下载镜像docker pull gcr.mirrors.ustc.edu.cn/google_containers/kubernetes-zookeeper:1.0-3.4.10 docker tag gcr.mirrors.ustc.edu.cn/google_containers/kubernetes-zookeeper:1.0-3.4.10 172.16.18.100:5000/gcr.io/google_containers/kubernetes-zookeeper:1.0-3.4.10 docker push 172.16.18.100:5000/gcr.io/google_containers/kubernetes-zookeeper:1.0-3.4.102. 定义ceph secret
cat << EOF | kubectl create -f - apiVersion: v1 data: key: QVFBYy9ndGFRUno4QlJBQXMxTjR3WnlqN29PK3VrMzI1a05aZ3c9PQo= kind: Secret metadata: creationTimestamp: 2017-11-20T10:29:05Z name: ceph-secret namespace: default resourceVersion: "2954730" selfLink: /api/v1/namespaces/default/secrets/ceph-secret uid: a288ff74-cffffd-11e7-81cc-000c29f99475 type: kubernetes.io/rbd EOF3. 定义storageclass rbd存储
cat << EOF | kubectl create -f - apiVersion: storage.k8s.io/v1 kind: StorageClass metadata: name: ceph parameters: adminId: admin adminSecretName: ceph-secret adminSecretNamespace: default fsType: ext4 imageFormat: "2" imagefeatures: layering monitors: 172.16.13.223 pool: k8s userId: admin userSecretName: ceph-secret provisioner: kubernetes.io/rbd reclaimPolicy: Delete EOF4. 创建zookeeper集群
使用rbd存储zookeeper节点数据
cat << EOF | kubectl create -f - --- apiVersion: v1 kind: Service metadata: name: zk-hs labels: app: zk spec: ports: - port: 2888 name: server - port: 3888 name: leader-election clusterIP: None selector: app: zk --- apiVersion: v1 kind: Service metadata: name: zk-cs labels: app: zk spec: ports: - port: 2181 name: client selector: app: zk --- apiVersion: policy/v1beta1 kind: PodDisruptionBudget metadata: name: zk-pdb spec: selector: matchLabels: app: zk maxUnavailable: 1 --- apiVersion: apps/v1beta2 # for versions before 1.8.0 use apps/v1beta1 kind: StatefulSet metadata: name: zk spec: selector: matchLabels: app: zk serviceName: zk-hs replicas: 3 updateStrategy: type: RollingUpdate podManagementPolicy: Parallel template: metadata: labels: app: zk spec: affinity: podAntiAffinity: requiredDuringSchedulingIgnoredDuringExecution: - labelSelector: matchExpressions: - key: "app" operator: In values: - zk topologyKey: "kubernetes.io/hostname" containers: - name: kubernetes-zookeeper imagePullPolicy: Always image: "172.16.18.100:5000/gcr.io/google_containers/kubernetes-zookeeper:1.0-3.4.10" ports: - containerPort: 2181 name: client - containerPort: 2888 name: server - containerPort: 3888 name: leader-election command: - sh - -c - "start-zookeeper --servers=3 --data_dir=/var/lib/zookeeper/data --data_log_dir=/var/lib/zookeeper/data/log --conf_dir=/opt/zookeeper/conf --client_port=2181 --election_port=3888 --server_port=2888 --tick_time=2000 --init_limit=10 --sync_limit=5 --heap=512M --max_client_cnxns=60 --snap_retain_count=3 --purge_interval=12 --max_session_timeout=40000 --min_session_timeout=4000 --log_level=INFO" readinessProbe: exec: command: - sh - -c - "zookeeper-ready 2181" initialDelaySeconds: 10 timeoutSeconds: 5 livenessProbe: exec: command: - sh - -c - "zookeeper-ready 2181" initialDelaySeconds: 10 timeoutSeconds: 5 volumeMounts: - name: datadir mountPath: /var/lib/zookeeper securityContext: runAsUser: 1000 fsGroup: 1000 volumeClaimTemplates: - metadata: name: datadir annotations: volume.beta.kubernetes.io/storage-class: ceph spec: accessModes: [ "ReadWriteOnce" ] resources: requests: storage: 1Gi EOF
查看创建结果
[root@172 zookeeper]# kubectl get no NAME STATUS ROLES AGE VERSION 172.16.20.10 Ready50m v1.8.2 172.16.20.11 Ready 2h v1.8.2 172.16.20.12 Ready 1h v1.8.2 [root@172 zookeeper]# kubectl get po -owide NAME READY STATUS RESTARTS AGE IP NODE zk-0 1/1 Running 0 8m 192.168.5.162 172.16.20.10 zk-1 1/1 Running 0 1h 192.168.2.146 172.16.20.11 [root@172 zookeeper]# kubectl get pv,pvc NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE pv/pvc-226cb8f0-d322-11e7-9581-000c29f99475 1Gi RWO Delete Bound default/datadir-zk-0 ceph 1h pv/pvc-22703ece-d322-11e7-9581-000c29f99475 1Gi RWO Delete Bound default/datadir-zk-1 ceph 1h NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE pvc/datadir-zk-0 Bound pvc-226cb8f0-d322-11e7-9581-000c29f99475 1Gi RWO ceph 1h pvc/datadir-zk-1 Bound pvc-22703ece-d322-11e7-9581-000c29f99475 1Gi RWO ceph 1h
zk-0 pod的rbd的锁信息为
[root@ceph1 ceph]# rbd lock list kubernetes-dynamic-pvc-227b45e5-d322-11e7-90ab-000c29f99475 -p k8s --user admin There is 1 exclusive lock on this image. Locker ID Address client.24146 kubelet_lock_magic_172.16.20.10 172.16.20.10:0/16061523505. 测试pod迁移
尝试将172.16.20.10节点设置为污点,让zk-0 pod自动迁移到172.16.20.12
kubectl cordon 172.16.20.10 [root@172 zookeeper]# kubectl get no NAME STATUS ROLES AGE VERSION 172.16.20.10 Ready,SchedulingDisabled58m v1.8.2 172.16.20.11 Ready 2h v1.8.2 172.16.20.12 Ready 1h v1.8.2 kubectl delete po zk-0
观察zk-0的迁移过程
[root@172 zookeeper]# kubectl get po -owide -w NAME READY STATUS RESTARTS AGE IP NODE zk-0 1/1 Running 0 14m 192.168.5.162 172.16.20.10 zk-1 1/1 Running 0 1h 192.168.2.146 172.16.20.11 zk-0 1/1 Terminating 0 16m 192.168.5.162 172.16.20.10 zk-0 0/1 Terminating 0 16m172.16.20.10 zk-0 0/1 Terminating 0 16m 172.16.20.10 zk-0 0/1 Terminating 0 16m 172.16.20.10 zk-0 0/1 Terminating 0 16m 172.16.20.10 zk-0 0/1 Terminating 0 16m 172.16.20.10 zk-0 0/1 Pending 0 0s zk-0 0/1 Pending 0 0s 172.16.20.12 zk-0 0/1 ContainerCreating 0 0s 172.16.20.12 zk-0 0/1 Running 0 3s 192.168.3.4 172.16.20.12
此时zk-0正常迁移到172.16.20.12
再查看rbd的锁定信息
[root@ceph1 ceph]# rbd lock list kubernetes-dynamic-pvc-227b45e5-d322-11e7-90ab-000c29f99475 -p k8s --user admin There is 1 exclusive lock on this image. Locker ID Address client.24146 kubelet_lock_magic_172.16.20.10 172.16.20.10:0/1606152350 [root@ceph1 ceph]# rbd lock list kubernetes-dynamic-pvc-227b45e5-d322-11e7-90ab-000c29f99475 -p k8s --user admin There is 1 exclusive lock on this image. Locker ID Address client.24154 kubelet_lock_magic_172.16.20.12 172.16.20.12:0/3715989358
之前在另外一个ceph集群测试这个zk pod迁移的时候,总是报错无法释放lock,经分析应该是使用的ceph账号没有相应的权限,所以导致释放lock失败。记录的报错信息如下:
Nov 27 10:45:55 172 kubelet: W1127 10:45:55.551768 11556 rbd_util.go:471] rbd: no watchers on kubernetes-dynamic-pvc-f35a411e-d317-11e7-90ab-000c29f99475 Nov 27 10:45:55 172 kubelet: I1127 10:45:55.694126 11556 rbd_util.go:181] remove orphaned locker kubelet_lock_magic_172.16.20.12 from client client.171490: err exit status 13, output: 2017-11-27 10:45:55.570483 7fbdbe922d40 -1 did not load config file, using default settings. Nov 27 10:45:55 172 kubelet: 2017-11-27 10:45:55.600816 7fbdbe922d40 -1 Errors while parsing config file! Nov 27 10:45:55 172 kubelet: 2017-11-27 10:45:55.600824 7fbdbe922d40 -1 parse_file: cannot open /etc/ceph/ceph.conf: (2) No such file or directory Nov 27 10:45:55 172 kubelet: 2017-11-27 10:45:55.600825 7fbdbe922d40 -1 parse_file: cannot open ~/.ceph/ceph.conf: (2) No such file or directory Nov 27 10:45:55 172 kubelet: 2017-11-27 10:45:55.600825 7fbdbe922d40 -1 parse_file: cannot open ceph.conf: (2) No such file or directory Nov 27 10:45:55 172 kubelet: 2017-11-27 10:45:55.602492 7fbdbe922d40 -1 Errors while parsing config file! Nov 27 10:45:55 172 kubelet: 2017-11-27 10:45:55.602494 7fbdbe922d40 -1 parse_file: cannot open /etc/ceph/ceph.conf: (2) No such file or directory Nov 27 10:45:55 172 kubelet: 2017-11-27 10:45:55.602495 7fbdbe922d40 -1 parse_file: cannot open ~/.ceph/ceph.conf: (2) No such file or directory Nov 27 10:45:55 172 kubelet: 2017-11-27 10:45:55.602496 7fbdbe922d40 -1 parse_file: cannot open ceph.conf: (2) No such file or directory Nov 27 10:45:55 172 kubelet: 2017-11-27 10:45:55.651594 7fbdbe922d40 -1 auth: unable to find a keyring on /etc/ceph/ceph.client.k8s.keyring,/etc/ceph/ceph.keyring,/etc/ceph/keyring,/etc/ceph/keyring.bin,: (2) No such file or directory Nov 27 10:45:55 172 kubelet: rbd: releasing lock failed: (13) Permission denied Nov 27 10:45:55 172 kubelet: 2017-11-27 10:45:55.682470 7fbdbe922d40 -1 librbd: unable to blacklist client: (13) Permission denied
k8s rbd volume的实现代码:
if lock { // check if lock is already held for this host by matching lock_id and rbd lock id if strings.Contains(output, lock_id) { // this host already holds the lock, exit glog.V(1).Infof("rbd: lock already held for %s", lock_id) return nil } // clean up orphaned lock if no watcher on the image used, statusErr := util.rbdStatus(&b) if statusErr == nil && !used { re := regexp.MustCompile("client.* " + kubeLockMagic + ".*") locks := re.FindAllStringSubmatch(output, -1) for _, v := range locks { if len(v) > 0 { lockInfo := strings.Split(v[0], " ") if len(lockInfo) > 2 { args := []string{"lock", "remove", b.Image, lockInfo[1], lockInfo[0], "--pool", b.Pool, "--id", b.Id, "-m", mon} args = append(args, secret_opt...) cmd, err = b.exec.Run("rbd", args...) # 执行rbd lock remove命令时返回了错误信息 glog.Infof("remove orphaned locker %s from client %s: err %v, output: %s", lockInfo[1], lockInfo[0], err, string(cmd)) } } } } // hold a lock: rbd lock add args := []string{"lock", "add", b.Image, lock_id, "--pool", b.Pool, "--id", b.Id, "-m", mon} args = append(args, secret_opt...) cmd, err = b.exec.Run("rbd", args...) }
可以看到,rbd lock remove操作被拒绝了,原因是没有权限rbd: releasing lock failed: (13) Permission denied。
6. 测试扩容zookeeper集群节点数从2个扩为3个。
集群节点数为2时,zoo.cfg的配置中定义了两个实例
zookeeper@zk-0:/opt/zookeeper/conf$ cat zoo.cfg #This file was autogenerated DO NOT EDIT clientPort=2181 dataDir=/var/lib/zookeeper/data dataLogDir=/var/lib/zookeeper/data/log tickTime=2000 initLimit=10 syncLimit=5 maxClientCnxns=60 minSessionTimeout=4000 maxSessionTimeout=40000 autopurge.snapRetainCount=3 autopurge.purgeInteval=12 server.1=zk-0.zk-hs.default.svc.cluster.local:2888:3888 server.2=zk-1.zk-hs.default.svc.cluster.local:2888:3888
使用kubectl edit statefulset zk命令修改replicas=3,start-zookeeper --servers=3,
此时观察pod的变化
[root@172 zookeeper]# kubectl get po -owide -w NAME READY STATUS RESTARTS AGE IP NODE zk-0 1/1 Running 0 1h 192.168.5.170 172.16.20.10 zk-1 1/1 Running 0 1h 192.168.3.12 172.16.20.12 zk-2 0/1 Pending 0 0szk-2 0/1 Pending 0 0s 172.16.20.11 zk-2 0/1 ContainerCreating 0 0s 172.16.20.11 zk-2 0/1 Running 0 1s 192.168.2.154 172.16.20.11 zk-2 1/1 Running 0 11s 192.168.2.154 172.16.20.11 zk-1 1/1 Terminating 0 1h 192.168.3.12 172.16.20.12 zk-1 0/1 Terminating 0 1h 172.16.20.12 zk-1 0/1 Terminating 0 1h 172.16.20.12 zk-1 0/1 Terminating 0 1h 172.16.20.12 zk-1 0/1 Terminating 0 1h 172.16.20.12 zk-1 0/1 Pending 0 0s zk-1 0/1 Pending 0 0s 172.16.20.12 zk-1 0/1 ContainerCreating 0 0s 172.16.20.12 zk-1 0/1 Running 0 2s 192.168.3.13 172.16.20.12 zk-1 1/1 Running 0 20s 192.168.3.13 172.16.20.12 zk-0 1/1 Terminating 0 1h 192.168.5.170 172.16.20.10 zk-0 0/1 Terminating 0 1h 172.16.20.10 zk-0 0/1 Terminating 0 1h 172.16.20.10 zk-0 0/1 Terminating 0 1h 172.16.20.10 zk-0 0/1 Terminating 0 1h 172.16.20.10 zk-0 0/1 Pending 0 0s zk-0 0/1 Pending 0 0s 172.16.20.10 zk-0 0/1 ContainerCreating 0 0s 172.16.20.10 zk-0 0/1 Running 0 2s 192.168.5.171 172.16.20.10 zk-0 1/1 Running 0 12s 192.168.5.171 172.16.20.10
可以看到zk-0/zk-1都重启了,这样可以加载新的zoo.cfg配置文件,保证集群正确配置。
新的zoo.cfg配置文件记录了3个实例:
[root@172 ~]# kubectl exec zk-0 -- cat /opt/zookeeper/conf/zoo.cfg #This file was autogenerated DO NOT EDIT clientPort=2181 dataDir=/var/lib/zookeeper/data dataLogDir=/var/lib/zookeeper/data/log tickTime=2000 initLimit=10 syncLimit=5 maxClientCnxns=60 minSessionTimeout=4000 maxSessionTimeout=40000 autopurge.snapRetainCount=3 autopurge.purgeInteval=12 server.1=zk-0.zk-hs.default.svc.cluster.local:2888:3888 server.2=zk-1.zk-hs.default.svc.cluster.local:2888:3888 server.3=zk-2.zk-hs.default.svc.cluster.local:2888:38887. 测试缩容
缩容的时候,zk集群也自动重启了所有的zk节点,缩容过程如下:
[root@172 ~]# kubectl get po -owide -w NAME READY STATUS RESTARTS AGE IP NODE zk-0 1/1 Running 0 5m 192.168.5.171 172.16.20.10 zk-1 1/1 Running 0 6m 192.168.3.13 172.16.20.12 zk-2 1/1 Running 0 7m 192.168.2.154 172.16.20.11 zk-2 1/1 Terminating 0 7m 192.168.2.154 172.16.20.11 zk-1 1/1 Terminating 0 7m 192.168.3.13 172.16.20.12 zk-2 0/1 Terminating 0 8m四. etcd集群部署 1. 创建etcd集群172.16.20.11 zk-1 0/1 Terminating 0 7m 172.16.20.12 zk-2 0/1 Terminating 0 8m 172.16.20.11 zk-1 0/1 Terminating 0 7m 172.16.20.12 zk-1 0/1 Terminating 0 7m 172.16.20.12 zk-1 0/1 Terminating 0 7m 172.16.20.12 zk-1 0/1 Pending 0 0s zk-1 0/1 Pending 0 0s 172.16.20.12 zk-1 0/1 ContainerCreating 0 0s 172.16.20.12 zk-1 0/1 Running 0 2s 192.168.3.14 172.16.20.12 zk-2 0/1 Terminating 0 8m 172.16.20.11 zk-2 0/1 Terminating 0 8m 172.16.20.11 zk-1 1/1 Running 0 19s 192.168.3.14 172.16.20.12 zk-0 1/1 Terminating 0 7m 192.168.5.171 172.16.20.10 zk-0 0/1 Terminating 0 7m 172.16.20.10 zk-0 0/1 Terminating 0 7m 172.16.20.10 zk-0 0/1 Terminating 0 7m 172.16.20.10 zk-0 0/1 Pending 0 0s zk-0 0/1 Pending 0 0s 172.16.20.10 zk-0 0/1 ContainerCreating 0 0s 172.16.20.10 zk-0 0/1 Running 0 3s 192.168.5.172 172.16.20.10 zk-0 1/1 Running 0 13s 192.168.5.172 172.16.20.10
cat << EOF | kubectl create -f - apiVersion: v1 kind: Service metadata: name: "etcd" annotations: # Create endpoints also if the related pod isn"t ready service.alpha.kubernetes.io/tolerate-unready-endpoints: "true" spec: ports: - port: 2379 name: client - port: 2380 name: peer clusterIP: None selector: component: "etcd" --- apiVersion: apps/v1beta1 kind: StatefulSet metadata: name: "etcd" labels: component: "etcd" spec: serviceName: "etcd" # changing replicas value will require a manual etcdctl member remove/add # command (remove before decreasing and add after increasing) replicas: 3 template: metadata: name: "etcd" labels: component: "etcd" spec: containers: - name: "etcd" image: "172.16.18.100:5000/quay.io/coreos/etcd:v3.2.3" ports: - containerPort: 2379 name: client - containerPort: 2380 name: peer env: - name: CLUSTER_SIZE value: "3" - name: SET_NAME value: "etcd" volumeMounts: - name: data mountPath: /var/run/etcd command: - "/bin/sh" - "-ecx" - | IP=$(hostname -i) for i in $(seq 0 $((${CLUSTER_SIZE} - 1))); do while true; do echo "Waiting for ${SET_NAME}-${i}.${SET_NAME} to come up" ping -W 1 -c 1 ${SET_NAME}-${i}.${SET_NAME}.default.svc.cluster.local > /dev/null && break sleep 1s done done PEERS="" for i in $(seq 0 $((${CLUSTER_SIZE} - 1))); do PEERS="${PEERS}${PEERS:+,}${SET_NAME}-${i}=http://${SET_NAME}-${i}.${SET_NAME}.default.svc.cluster.local:2380" done # start etcd. If cluster is already initialized the `--initial-*` options will be ignored. exec etcd --name ${HOSTNAME} --listen-peer-urls http://${IP}:2380 --listen-client-urls http://${IP}:2379,http://127.0.0.1:2379 --advertise-client-urls http://${HOSTNAME}.${SET_NAME}:2379 --initial-advertise-peer-urls http://${HOSTNAME}.${SET_NAME}:2380 --initial-cluster-token etcd-cluster-1 --initial-cluster ${PEERS} --initial-cluster-state new --data-dir /var/run/etcd/default.etcd ## We are using dynamic pv provisioning using the "standard" storage class so ## this resource can be directly deployed without changes to minikube (since ## minikube defines this class for its minikube hostpath provisioner). In ## production define your own way to use pv claims. volumeClaimTemplates: - metadata: name: data annotations: volume.beta.kubernetes.io/storage-class: ceph spec: accessModes: - "ReadWriteOnce" resources: requests: storage: 1Gi EOF
创建完成之后的po,pv,pvc清单如下:
[root@172 etcd]# kubectl get po -owide NAME READY STATUS RESTARTS AGE IP NODE etcd-0 1/1 Running 0 15m 192.168.5.174 172.16.20.10 etcd-1 1/1 Running 0 15m 192.168.3.16 172.16.20.12 etcd-2 1/1 Running 0 5s 192.168.5.176 172.16.20.102. 测试缩容
kubectl scale statefulset etcd --replicas=2 [root@172 ~]# kubectl get po -owide -w NAME READY STATUS RESTARTS AGE IP NODE etcd-0 1/1 Running 0 17m 192.168.5.174 172.16.20.10 etcd-1 1/1 Running 0 17m 192.168.3.16 172.16.20.12 etcd-2 1/1 Running 0 1m 192.168.5.176 172.16.20.10 etcd-2 1/1 Terminating 0 1m 192.168.5.176 172.16.20.10 etcd-2 0/1 Terminating 0 1m172.16.20.10
检查集群健康
kubectl exec etcd-0 -- etcdctl cluster-health failed to check the health of member 42c8b94265b9b79a on http://etcd-2.etcd:2379: Get http://etcd-2.etcd:2379/health: dial tcp: lookup etcd-2.etcd on 10.96.0.10:53: no such host member 42c8b94265b9b79a is unreachable: [http://etcd-2.etcd:2379] are all unreachable member 9869f0647883a00d is healthy: got healthy result from http://etcd-1.etcd:2379 member c799a6ef06bc8c14 is healthy: got healthy result from http://etcd-0.etcd:2379 cluster is healthy
发现缩容后,etcd-2并没有从etcd集群中自动删除,可见这个etcd镜像对自动扩容缩容的支持并不够好。
我们手工删除掉etcd-2
[root@172 etcd]# kubectl exec etcd-0 -- etcdctl member remove 42c8b94265b9b79a Removed member 42c8b94265b9b79a from cluster [root@172 etcd]# kubectl exec etcd-0 -- etcdctl cluster-health member 9869f0647883a00d is healthy: got healthy result from http://etcd-1.etcd:2379 member c799a6ef06bc8c14 is healthy: got healthy result from http://etcd-0.etcd:2379 cluster is healthy3. 测试扩容
从etcd.yaml的启动脚本中可以看出,扩容时新启动一个etcd pod时参数--initial-cluster-state new,该etcd镜像并不支持动态扩容,可以考虑使用基于dns动态部署etcd集群的方式来修改启动脚本,这样才能支持etcd cluster动态扩容。
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/27153.html
摘要:二总结使用的和的,能够很好的支持这样的有状态服务部署到集群上。部署方式有待优化本次试验中使用静态方式部署集群,如果节点变迁时,需要执行等命令手动配置集群,严重限制了集群自动故障恢复扩容缩容的能力。 一. 概述 kubernetes通过statefulset为zookeeper、etcd等这类有状态的应用程序提供完善支持,statefulset具备以下特性: 为pod提供稳定的唯一的...
摘要:是一个相对比较新的微服务框架,年才推出的版本虽然时间最短但是相比等框架提供的全套的分布式系统解决方案。提供线程池不同的服务走不同的线程池,实现了不同服务调用的隔离,避免了服务器雪崩的问题。通过互相注册的方式来进行消息同步和保证高可用。 Spring Cloud 是一个相对比较新的微服务框架,...
摘要:的服务治理平台发源于早期的个人项目。客户端发现模式要求客户端负责查询注册中心,获取服务提供者的列表信息,使用负载均衡算法选择一个合适的服务提供者,发起接口调用请求。系统和系统之间,少不了数据的互联互通。随着微服务的流行,一个系统内的不同应用进行互联互通也是常态。 PowerDotNet的服务治理平台发源于早期的个人项目Power.Apix。这个项目借鉴了工作过的公司的服务治理方案,站在...
摘要:谷歌思科华为等等均是的贡献成员。其中谷歌云平台和等大型云提供商成功在生产环境中使用了。它为良好稳定的生产部署提供了一个良好的起点。预先准备在继续之前,我们需要准备一个谷歌云平台的账号免费的应该足够了。我们将为部署配置。 本文将带你充分了解Etcd的工作原理,演示如何用Kubernetes建立并运行etcd集群,如何与Etcd交互,如何在Etcd中设置和检索值,如何配置高可用等等。 sh...
阅读 1479·2021-11-16 11:44
阅读 3297·2021-09-29 09:43
阅读 630·2019-08-30 10:52
阅读 950·2019-08-29 11:01
阅读 3264·2019-08-26 11:47
阅读 2899·2019-08-23 12:18
阅读 1371·2019-08-22 17:04
阅读 2056·2019-08-21 17:04