资讯专栏INFORMATION COLUMN

基于docker1.7.03.1单机上部署hadoop2.7.3分布式集群

jiekechoo / 2031人阅读

摘要:和,容器中的这三个文件不存在于镜像,而是存在于,在启动容器的时候,通过的形式将这些文件挂载到容器内部。

基于docker1.7.03.1单机上部署hadoop2.7.3分布式集群

[TOC]

声明

文章均为本人技术笔记,转载请注明出处:
[1] https://segmentfault.com/u/yzwall
[2] blog.csdn.net/j_dark/

0 docker版本与hadoop版本说明

PC:ubuntu 16.04.1 LTS

Docker version:17.03.1-ce OS/Arch:linux/amd64

Hadoop version:hadoop-2.7.3

1 docker中配置构建hadoop镜像 1.1 创建docker容器container

创建基于ubuntu镜像的容器container,官方默认下载ubuntu最新精简版镜像;
sudo docker run -ti container ubuntu

1.2 修改/etc/source.list

修改默认源文件/etc/apt/source.list,用国内源代替官方源;

1.3 安装java8
# docker镜像为了精简容量,删除了许多ubuntu自带组件,通过`apt-get update`更新获得
apt-get update
apt-get install software-properties-common python-software-properties # add-apt-repository
apt-get install software-properties-commonapt-get install software-properties-common # add-apt-repository
add-apt-repository ppa:webupd8team/java
apt-get update
apt-get install oracle-java8-installer
java -version
1.4 docker中安装hadoop-2.7.3 1.4.1 下载hadoop-2.7.3源码
# 创建多级目录
mkdir -p /software/apache/hadoop
cd /software/apache/hadoop
# 下载并解压hadoop
wget http://mirrors.sonic.net/apache/hadoop/common/hadoop-2.7.3/hadoop-2.7.3.tar.gz
tar xvzf hadoop-2.7.3.tar.gz
1.4.2 配置环境变量

修改~/.bashrc文件。在文件末尾加入下面配置信息:

export JAVA_HOME=/usr/lib/jvm/java-8-oracle
export HADOOP_HOME=/software/apache/hadoop/hadoop-2.7.3
export HADOOP_CONFIG_HOME=$HADOOP_HOME/etc/hadoop
export PATH=$PATH:$HADOOP_HOME/bin
export PATH=$PATH:$HADOOP_HOME/sbin

source ~/.bashrc使环境变量配置生效;
注意:完成./bashrc文件配置后,hadoop-env.sh无需再配置;

1.5 配置hadoop

配置hadoop主要配置core-site.xmlhdfs-site.xmlmapred-site.xmlyarn-site.xml三个文件;

$HADOOP_HOME下创建namenode, datanodetmp目录

cd $HADOOP_HOME
mkdir tmp
mkdir namenode
mkdir datanode
1.5.1 配置core.site.xml

配置项hadoop.tmp.dir指向tmp目录

配置项fs.default.name指向master节点,配置为hdfs://master:9000


    
        
        hadoop.tmp.dir
        /software/apache/hadoop/hadoop-2.7.3/tmp
        A base for other temporary directories.
    

    
    
        io.file.buffer.size
        131072
    
    
    
        fs.default.name
        hdfs://master:9000
        true
        The name of the default file system.
    
1.5.2 配置hdfs-site.xml

dfs.replication表示节点数目,配置集群1个namenode,3个datanode,设置备份数为4;

dfs.namenode.name.dirdfs.datanode.data.dir分别配置为之前创建的NameNode和DataNode的目录路径


    
        dfs.namenode.secondary.http-address
        master:9001
    

    
        dfs.replication
        3
        true
        Default block replication.
    

    
        dfs.namenode.name.dir
        /software/apache/hadoop/hadoop-2.7.3/namenode
        true
    

    
        dfs.datanode.data.dir
        /software/apache/hadoop/hadoop-2.7.3/datanode
        true
    

    
        dfs.webhdfs.enabled
        true
    
1.5.3 配置mapred-site.xml

$HADOOP_HOME下使用cp命令创建mapred-site.xml

cd $HADOOP_HOME
cp mapred-site.xml.template mapred-site.xml

配置mapred-site.xml配置项mapred.job.tracker指向master节点

在hadoop 2.x.x中,用户无需配置mapred.job.tracker,因为JobTracker已经不存在,功能由组件MRAppMaster实现,因此需要用mapreduce.framework.name指定运行框架名称,指定yarn

——《Hadoop技术内幕:深入解析YARN架构设计与实现原理》


    
        mapreduce.framework.name
        yarn
    
    
    
        mapreduce.jobhistory.address
        master:10020
    
    
    
        mapreduce.jobhistory.address
        master:19888
    
1.5.4 配置yarn-site.xml

      
        yarn.nodemanager.aux-services  
        mapreduce_shuffle  
      
                                                                      
        yarn.nodemanager.aux-services.mapreduce.shuffle.class  
        org.apache.hadoop.mapred.ShuffleHandler  
      
      
        yarn.resourcemanager.address  
        master:8032  
      
      
        yarn.resourcemanager.scheduler.address  
        master:8030  
      
      
        yarn.resourcemanager.resource-tracker.address  
        master:8031  
      
      
        yarn.resourcemanager.admin.address  
        master:8033  
      
      
        yarn.resourcemanager.webapp.address  
        master:8088  
      
1.5.5 安装vim,ifconfig与ping

安装ifconfigping命令所需软件包

apt-get update
apt-get install vim
apt-get install net-tools       # for ifconfig 
apt-get install inetutils-ping  # for ping
1.5.6 构建hadoop基础镜像

假设当前容器名为container,保存基础镜像为ubuntu:hadoop,后续hadoop集群容器都根据该镜像创建启动,无需重复配置;
sudo docker commit -m "hadoop installed" container ubuntu:hadoop /bin/bash

2. hadoop分布式集群搭建 2.1 根据已经创建hadoop基础镜像创建容器集群

分别根据基础镜像ubuntu:hadoop创建mater容器和slave1~3容器,各自主机名容器名一致;
创建master:docker run -ti -h master --name master ubuntu:hadoop /bin/bash
创建slave1:docker run -ti -h slave1 --name slave1 ubuntu:hadoop /bin/bash
创建slave2:docker run -ti -h slave2 --name slave2 ubuntu:hadoop /bin/bash
创建slave3:docker run -ti -h slave3 --name slave3 ubuntu:hadoop /bin/bash

2.2 配置各容器hosts文件

在各容器的/etc/hosts中添加以下内容,各容器ip地址通过ifconfig查看:

master 172.17.0.2 
slave1 172.17.0.3 
slave2 172.17.0.4 
slave3 172.17.0.5 

注意:docker容器重启后,hosts内容可能会失效,经验不足暂时只能避免容器频繁重启,否则得手动再次配置hosts文件;

参考http://dockone.io/question/400

1./etc/hosts, /etc/resolv.conf和/etc/hostname,容器中的这三个文件不存在于镜像,而是存在于/var/lib/docker/containers/,在启动容器的时候,通过mount的形式将这些文件挂载到容器内部。因此,如果在容器中修改这些文件的话,修改部分不会存在于容器的top layer,而是直接写入这三个物理文件中。
2.为什么重启后修改内容不存在?原因是:每次Docker在启动容器的时候,通过重新构建新的/etc/hosts文件,这又是为什么呢?原因是:容器重启,IP地址为改变,hosts文件中原来的IP地址无效,因此理应修改hosts文件,否则会产生脏数据。?原因是:每次Docker在启动容器的时候,通过重新构建新的/etc/hosts文件,这又是为什么呢?原因是:容器重启,IP地址为改变,hosts文件中原来的IP地址无效,因此理应修改hosts文件,否则会产生脏数据。1./etc/hosts, /etc/resolv.conf和/etc/hostname,容器中的这三个文件不存在于镜像,而是存在于/var/lib/docker/containers/,在启动容器的时候,通过mount的形式将这些文件挂载到容器内部。因此,如果在容器中修改这些文件的话,修改部分不会存在于容器的top layer,而是直接写入这三个物理文件中。

2.3 集群节点SSH配置 2.3.1 所有节点:安装ssh
apt-get update
apt-get install ssh
apt-get install openssh-server
2.3.2 所有节点:生成随机密钥
# 生成无密码密钥,生成密钥位于~/.ssh下
ssh-keygen -t rsa -P ""
2.3.3 master节点:生成证书文件authorized_keys

将生成的公钥写入authorized_keys中

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys 
2.3.4 所有节点:修改sshd_config文件

通过修改sshd_config文件,保证ssh可远程登陆其他节点的root用户

vim /etc/ssh/sshd_config
# 将PermitRootLogin prohibit-password修改为PermitRootLogin yes
# 重启ssh服务
service ssh restart
2.3.5 master节点:通过scp传输证书到slave节点

传输master节点上的authorized_keys到其他slave节点~/.ssh下,覆盖同名文件;保证所有节点的证书一致,因此可以实现任意节点间可以通过ssh访问;

cd ~/.ssh
scp authorized_keys root@slave1:~/.ssh/
scp authorized_keys root@slave2:~/.ssh/
scp authorized_keys root@slave3:~/.ssh/
2.3.6 slave节点:修改证书权限确保生效
chmod 600 ~/.ssh/authorized_keys
注意

查看ssh服务是否开启:ps -e | grep ssh

开启ssh服务:service ssh start

重启ssh服务:service ssh restart

完成2.3.1操作后,各个容器之间可通过ssh访问;

2.4 master节点配置

在master节点中,修改slaves文件配置slave节点

cd $HADOOP_CONFIG_HOME/
vim slaves

将其中内容覆盖为:

slave1
slave2
slave3
2.5 启动hadoop集群

进入master节点,

执行hdfs namenode -format,出现类似信息表示namenode格式化成功:

common.Storage: Storage directory /software/apache/hadoop/hadoop-2.7.3/namenode has been successfully formatted.

执行start_all.sh启动集群:

root@master:/# start-all.sh
This script is Deprecated. Instead use start-dfs.sh and start-yarn.sh
Starting namenodes on [master]
The authenticity of host "master (172.17.0.2)" can"t be established.
ECDSA key fingerprint is SHA256:OewrSOYpvfDE6ixf6Gw9U7I9URT2zDCCtDJ6tjuZz/4.
Are you sure you want to continue connecting (yes/no)? yes
master: Warning: Permanently added "master,172.17.0.2" (ECDSA) to the list of known hosts.
master: starting namenode, logging to /software/apache/hadoop/hadoop-2.7.3/logs/hadoop-root-namenode-master.out
slave3: starting datanode, logging to /software/apache/hadoop/hadoop-2.7.3/logs/hadoop-root-datanode-slave3.out
slave2: starting datanode, logging to /software/apache/hadoop/hadoop-2.7.3/logs/hadoop-root-datanode-slave2.out
slave1: starting datanode, logging to /software/apache/hadoop/hadoop-2.7.3/logs/hadoop-root-datanode-slave1.out
Starting secondary namenodes [master]
master: starting secondarynamenode, logging to /software/apache/hadoop/hadoop-2.7.3/logs/hadoop-root-secondarynamenode-master.out
starting yarn daemons
starting resourcemanager, logging to /software/apache/hadoop/hadoop-2.7.3/logs/yarn-root-resourcemanager-master.out
slave3: starting nodemanager, logging to /software/apache/hadoop/hadoop-2.7.3/logs/yarn-root-nodemanager-slave3.out
slave1: starting nodemanager, logging to /software/apache/hadoop/hadoop-2.7.3/logs/yarn-root-nodemanager-slave1.out
slave2: starting nodemanager, logging to /software/apache/hadoop/hadoop-2.7.3/logs/yarn-root-nodemanager-slave2.out

分别在master,slave节点中执行jps

master:

root@master:/# jps
2065 Jps
1446 NameNode
1801 ResourceManager
1641 SecondaryNameNode

slave1:

1107 NodeManager
1220 Jps
1000 DataNode

slave2:

241 DataNode
475 Jps
348 NodeManager

slave3:

500 Jps
388 NodeManager
281 DataNode
3. 执行wordcount

在hdfs中创建输入目录/hadoopinput,并将输入文件LICENSE.txt存储在该目录下:

root@master:/# hdfs dfs -mkdir -p /hadoopinput
root@master:/# hdfs dfs -put LICENSE.txt /hadoopint

进入$HADOOP_HOME/share/hadoop/mapreduce,提交wordcount任务给集群,将计算结果保存在hdfs中的/hadoopoutput目录下:

root@master:/# cd $HADOOP_HOME/share/hadoop/mapreduce
root@master:/software/apache/hadoop/hadoop-2.7.3/share/hadoop/mapreduce# hadoop jar hadoop-mapreduce-examples-2.7.3.jar wordcount /hadoopinput /hadoopoutput
17/05/26 01:21:34 INFO client.RMProxy: Connecting to ResourceManager at master/172.17.0.2:8032
17/05/26 01:21:35 INFO input.FileInputFormat: Total input paths to process : 1
17/05/26 01:21:35 INFO mapreduce.JobSubmitter: number of splits:1
17/05/26 01:21:35 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1495722519742_0001
17/05/26 01:21:36 INFO impl.YarnClientImpl: Submitted application application_1495722519742_0001
17/05/26 01:21:36 INFO mapreduce.Job: The url to track the job: http://master:8088/proxy/application_1495722519742_0001/
17/05/26 01:21:36 INFO mapreduce.Job: Running job: job_1495722519742_0001
17/05/26 01:21:43 INFO mapreduce.Job: Job job_1495722519742_0001 running in uber mode : false
17/05/26 01:21:43 INFO mapreduce.Job:  map 0% reduce 0%
17/05/26 01:21:48 INFO mapreduce.Job:  map 100% reduce 0%
17/05/26 01:21:54 INFO mapreduce.Job:  map 100% reduce 100%
17/05/26 01:21:55 INFO mapreduce.Job: Job job_1495722519742_0001 completed successfully
17/05/26 01:21:55 INFO mapreduce.Job: Counters: 49
    File System Counters
        FILE: Number of bytes read=29366
        FILE: Number of bytes written=295977
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=84961
        HDFS: Number of bytes written=22002
        HDFS: Number of read operations=6
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=2
    Job Counters 
        Launched map tasks=1
        Launched reduce tasks=1
        Data-local map tasks=1
        Total time spent by all maps in occupied slots (ms)=2922
        Total time spent by all reduces in occupied slots (ms)=3148
        Total time spent by all map tasks (ms)=2922
        Total time spent by all reduce tasks (ms)=3148
        Total vcore-milliseconds taken by all map tasks=2922
        Total vcore-milliseconds taken by all reduce tasks=3148
        Total megabyte-milliseconds taken by all map tasks=2992128
        Total megabyte-milliseconds taken by all reduce tasks=3223552
    Map-Reduce Framework
        Map input records=1562
        Map output records=12371
        Map output bytes=132735
        Map output materialized bytes=29366
        Input split bytes=107
        Combine input records=12371
        Combine output records=1906
        Reduce input groups=1906
        Reduce shuffle bytes=29366
        Reduce input records=1906
        Reduce output records=1906
        Spilled Records=3812
        Shuffled Maps =1
        Failed Shuffles=0
        Merged Map outputs=1
        GC time elapsed (ms)=78
        CPU time spent (ms)=1620
        Physical memory (bytes) snapshot=451264512
        Virtual memory (bytes) snapshot=3915927552
        Total committed heap usage (bytes)=348127232
    Shuffle Errors
        BAD_ID=0
        CONNECTION=0
        IO_ERROR=0
        WRONG_LENGTH=0
        WRONG_MAP=0
        WRONG_REDUCE=0
    File Input Format Counters 
        Bytes Read=84854
    File Output Format Counters 
        Bytes Written=22002

计算结果保存在/hadoopoutput/part-r-00000中,查看结果:

root@master:/# hdfs dfs -ls /hadoopoutput
Found 2 items
-rw-r--r--   3 root supergroup          0 2017-05-26 01:21 /hadoopoutput/_SUCCESS
-rw-r--r--   3 root supergroup      22002 2017-05-26 01:21 /hadoopoutput/part-r-00000

root@master:/# hdfs dfs -cat /hadoopoutput/part-r-00000
""AS    2
"AS    16
"COPYRIGHTS    1
"Contribution"    2
"Contributor"    2
"Derivative    1
"Legal    1
"License"    1
"License");    1
"Licensed    1
"Licensor"    1
...

至此,基于docker1.7.03单机上部署hadoop2.7.3集群圆满成功!

参考

[1] http://tashan10.com/yong-dockerda-jian-hadoopwei-fen-bu-shi-ji-qun/
[2] http://blog.csdn.net/xiaoxiangzi222/article/details/52757168

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/26925.html

相关文章

  • 阿里数据库的极致弹性之路

    摘要:今天,阿里资深技术专家天羽为我们讲述阿里数据库的极致弹性之路。二容器化弹性,提升资源效率随着单机服务器的能力提升,阿里数据库在年就开始使用单机多实例的方案,通过和文件系统目录端口的部署隔离,支持单机多实例,把单机资源利用起来。 showImg(https://segmentfault.com/img/remote/1460000017333275); 阿里妹导读:数据库从IOE(IBM...

    ispring 评论0 收藏0
  • 阿里数据库的极致弹性之路

    摘要:今天,阿里资深技术专家天羽为我们讲述阿里数据库的极致弹性之路。二容器化弹性,提升资源效率随着单机服务器的能力提升,阿里数据库在年就开始使用单机多实例的方案,通过和文件系统目录端口的部署隔离,支持单机多实例,把单机资源利用起来。 showImg(https://segmentfault.com/img/remote/1460000017333275); 阿里妹导读:数据库从IOE(IBM...

    caozhijian 评论0 收藏0
  • 大数据入门指南(GitHub开源项目)

    摘要:项目地址前言大数据技术栈思维导图大数据常用软件安装指南一分布式文件存储系统分布式计算框架集群资源管理器单机伪集群环境搭建集群环境搭建常用命令的使用基于搭建高可用集群二简介及核心概念环境下的安装部署和命令行的基本使用常用操作分区表和分桶表视图 项目GitHub地址:https://github.com/heibaiying... 前 言 大数据技术栈思维导图 大数据常用软件安装指...

    guyan0319 评论0 收藏0

发表评论

0条评论

最新活动
阅读需要支付1元查看
<