资讯专栏INFORMATION COLUMN

PoW 本质上是个去中心化的时钟

LucasTwilight / 1843人阅读

摘要:当理解了这些属性,你应该能够得出一个结论的机制主要实现了一个分布式,去中心化的时间系统,即一个时钟。很遗憾,在一个去中心化系统中,不可能通过时间戳来决定事件的先后顺序。因此,算力是一个与参与者数量,和那些用来计算哈希设备的速度相关的函数。

原文:Blockchain Proof-of-Work Is a Decentralized Clock

原文从区块链如何保持交易有序的基本问题出发,对该问题进行了详细阐述,并提出 PoW 本质上是实现了一个“时钟”的观点,这个时钟的一个滴答对应的就是 PoW 算出一次的解。

本文解释了比特币 PoW(Proof-of-Work, 工作量证明) 的关键要素,尤其对 PoW 来说不可或缺的一个特性,同时也表明关于 PoW 经常谈到的一些其他特性其实是次要作用,比如安全性,这些次要效应有用,但是非必要。

要想理解本文,首先要懂得在区块链中,PoW 是如何工作的一些有趣的属性,这些属性并不那么直观,甚至可以说相当反直觉,比如参与者如何在从来没有相互交流的情况下,共同地求解一个问题。

当理解了这些属性,你应该能够得出一个结论:PoW 的机制主要实现了一个分布式,去中心化的时间系统,即一个时钟。

注意本文并非关注 PoW 算法本身的细节,而是探究区块链如何“严丝合缝”地将 PoW 运用其中。如果你还没听过 PoW,请先阅读 这里。

分布式账本时间排序问题

在讲解决方案之前,先来关注问题本身。很多 PoW 的相关资料都很令人费解,因为它们常常在没有阐明问题的情况下,就试图讲清楚解决方案。

毫无疑问,任何账本都需要有序。你不能发费还没有收到的钱,也不能花费已经花出去的钱。区块链交易(或者说包含交易的块)必须有序,无歧义,同时无需可信的第三方。

即便区块链不是一个账本,而是就像日志一样的数据,对于所有节点来说,如果要想共同保有一份完全相同的区块链副本,有序也是必不可少的。交易顺序不同,就是不同的两条链。

但是,如果交易是由全世界的匿名参与者生成,也没有中心化机构负责给交易排序,那又如何实现这一点呢?有人会说,交易(或者块)可以包含时间戳,但是这些时间戳又如何可信呢?

时间是一个人类概念,时间的任何来源,比如一个原子时钟,就是一个“可信第三方”,除此之外,由于网络延迟和相对论效应,时钟的大部分时间都有轻微误差。很遗憾,在一个去中心化系统中,不可能通过时间戳来决定事件的先后顺序。

我们所关心的“时间”并不是所熟悉的年,月,日这种概念。我们需要的是这样一种机制,它可以用来确认一个事件在另一个事件之前发生,或者可能并发发生。

首先,为了建立之前与之后的概念,首先必须要建立一个时间点的概念。理论上来说,建立一个点时间的概念似乎并不太可能,因为没有技术能够足够精确地测量 普朗克时间。但是你会看到,比特币通过创建属于自己的时间概念变相解决了这个问题,使得确立精确的时间点概念在事实上成为可能。

Leslie Lamport 1978 年的论文 “分布式系统中的时间,时钟和事件顺序” 中对这个问题有了详细描述,但是除了“正确同步的物理时钟”,实际上并没有提供一个详细的解决方案。1982 年 Lamport 同样描述了 “拜占庭将军问题”,中本聪在他早期的一封邮件中 解释 了 PoW 如何解决了这个问题,比特币白皮书 指出“为了在端到端的基础上实现一个分布式的 时间戳服务器,我们将会使用一个工作量证明系统”,也表明了它主要解决了时间戳的问题。

时间是根本问题

必须要强调的是,在分布式系统中,不可能将事件与时间点关联起来,这是一个尚不可解问题,直到中本聪找到了一个解决方案,才使得分布式账本成为可能。在区块链中还有很多其他的技术细节,但是时间是最基础也是最重要的。没有时间,就没有区块链。

PoW 回顾

简而言之,比特币的 PoW 就是 SHA-2 哈希满足特定的条件的一个解,这个解很难找到。通过要求哈希满足一个特定的数字,就确定了一个难度(difficulty),难度的值越小,满足输入的数字越少,找到解的难度就越大。

这就是所谓的“工作量证明”,因为满足哈希要求的解非常稀少,这意味着找到这样一个解需要很多试错,也就是,“工作(work)”。而工作也就是意味着时间

块间无变化

链的状态由块所反映,每个新的块产生一个新的状态。区块链的状态每次向前推动一个块,平均每个块 10 分钟,是区块链里面最小的时间度量单位。

SHA 无记忆,无进展

SHA(Secure Hash Algorithm) 在统计学和概率上以无记忆性(memoryless) 闻名。对于我们人类而言,无记忆性有点反直觉。所谓无记忆性,就是无论之前发生了什么,都不影响这一次事件发生的概率。

关于无记忆性,最好的例子就是抛硬币。如果一个硬币连续 10 次都是正面,那么下一次是反面的可能性会不会更大呢?我们的直觉是会,但是实际上,无论上一次的结果是什么,每次抛硬币正反面都是一半一半的概率。

而对于需要无进展(progress-free)的问题,无记忆性又是必要条件。progress-free 意味着当矿工试图通过对 nonces 进行迭代解决难题时,每一次尝试都是一个独立事件,无论之前已经算过了多少次,每次尝试找到答案的概率是固定的。换句话来说,每次尝试,参与者都不会离“答案”越近,或者说有任何进展(progress)。就下一次尝试而言,一个已经算了一年的矿工,与上一秒刚开始算的矿工,算出来的概率是一样的。

在指定时间内,给定一个难度,找到答案的概率唯一地由所有参与者能够迭代哈希的速度决定。与之前的历史无关,与数据无关,只跟算力有关。

因此,算力是一个与参与者数量,和那些用来计算哈希设备的速度相关的函数。

SHA 与输入无关

在比特币中,输入的是区块头。但是如果给它随机传入一些值,找到一个合适哈希的概率仍然是一样的。无论输入是一个有效的块头,还是 /dev/random 中随机的一些字节,都要花费平均 10 分钟来找到一个解。

如果你找到了一个合适的哈希,但是输入却不是一个有效的块头,虽然无法将块上链,但是它仍然是一个工作量证明(即使没啥用)。

难度属于银河系

令人惊奇的是,难度是universe(全宇宙,或者说通用的),也就是说它充满了整个宇宙,无处不在。火星上的矿工也同样能参与挖矿,但是他们不需要感知到地球矿工的存在,也不需要与地球上的矿工有交流,仍然是每 10 分钟就会解决一个“难题”。(好吧,当他们解出难题时,需要告诉地球上的矿工,否则我们永远也不知道)。

了不起的是,远距离参与者不需要通过真正的相互交流进行沟通,因为他们在共同地求解同一个统计学问题,并且他们甚至互相感知不到对方的存在。

“通用属性(universal property)”一开始看起来很神奇,实际上很容易解释。我用了“通用”一词,因为就这一个词即可表达到位,但是它实际指的是“所有参与者都知道(这个难度)”。

SHA-256 的输入可以是 0 到 2 的 256 方之间的任何一个整数(因为输出是 32 字节,也就是在 0 到 2^256,任何超过该范围的数将会导致冲突,也就是多余)。即使这个集合已经非常大了(比已知宇宙里所有原子总数都大),不过每个参与者都知道这个集合,并且只能从这个集合里选取一个数。

如果输入的集合全世界都知道,SHA-256 全世界都知道,难度要求也是全世界都知道了,那么找到一个解的概率自然也就是“全世界都知道(universe)”。

计算 SHA 即参与

如果所述问题是找到一个合适的哈希,那么要想解出这个问题,只需要去试一次,但是,哪怕就试一次,你就已经影响了整个算力。就这次尝试而言,你就已经成为了一个帮助其他人解决问题的参与者。虽然你不需要告诉其他人你“做了”(除非你找到了答案),其他人也不需要知道,但是想要找到解的这次尝试真真切切地影响到了结果。对于全宇宙而言,也是如此。

如果上面这段话看起来仍然不是那么令人信服,一个很好的类比就是寻找大素数问题。找到最大的素数很难,并且一旦找到,它就是“被发现”或者“已知的”。有无数的素数,但是在全宇宙中,每个数只有一个实例。因此无论是谁试图找到最大素数,就是在解同一个问题,而不是这个问题另一个多带带的实例。你不需要告诉其他人你已经打算寻找最大素数,你只需要在找到时通知其他人。如果从来没有人寻找最大素数,那么它永远也不会被找到。因此,只要参与(也就是试图找到素数),即使它正在秘密进行,仍会影响结果,只要公布最后的发现(如果找到)。

这就是中本聪设计的精妙之处,他利用了这个令人难以置信的统计学现象,即任何参与都会影响结果,即使秘密进行,即使尚未成功。

值得注意的是,因为 SHA 是 progress-free,每一次尝试都可以被认为是一个参与者加入其中,然后立即退出。因此可以这么理解,矿工们来了又走,每秒无数次轮回。

参与度由统计学揭示

这个神奇的秘密参与(secret participation)属性反过来也成立。很多网站上显示的全球算力,并非是由每个矿工在某个“矿工注册办公室”注册,并定期汇报他们的算力而来。并不存在这种事情。

因为对于在 10 分钟找到一个指定难度的解,所需算力是已知的,一个人平均必须尝试这么多次(截止成文之时大概 10^21)才能找到答案,无论这个人是谁,他在哪儿。

我们不知道这些参与者是谁,他们也从来都不会说我正在参与其中,没有找到解的人(实际上他们都是)从来不会告诉其他人他们正在进行计算,他们可能在世界上任何一个地方,但是我们肯定他们必然存在。因为生活还要继续,问题(找到满足条件的哈希)始终还是要被解决。

工作(work)是一个时钟(clock)

关键之处在于:找到满足条件的哈希的难度,就类似于一个时钟的角色。一个宇宙(universe)时钟,因为全宇宙只有一个这样的时钟,不需要同步,任何人都能“看”到这个时钟。

即使这个时钟不精确也没关系。重要的是,对所有人来说,它都是同一个时钟,链的状态与这个时钟的滴答(tick)无歧义地绑定到一起。

这个时钟由遍布地球上的未知数量的参与者共同操作,参与者相互之间完全独立。

谜题的最后一部分

解决方案必须是块哈希(准确来说,是块头)。上面已经提到,对于 SHA 来说,输入的内容并不重要,但是如果它是真实的块,那么无论何时找到一个解,它都发生在 PoW 这个时钟的滴答处。没有早一点,没有晚一点,而是恰好在这个点。我们知道这是毫无歧义的,因为块是整个机制的一部分。

换句话来说,如果块不是 SHA256 函数的输入,我们仍然有一个分布式时钟,但是我们无法将块绑定到这个时钟的滴答上。将块作为输入就解决了这个问题。

值得注意的是,我们的 PoW 时钟只提供了滴答。但是我们没办法从滴答中分出顺序,于是就引入了哈希链(hash chain)。

分布式共识

共识(consensus)意味着意见一致(agreement)。所有参与者别无选择,只能同意“时钟已然滴答”。并且每个人都知道滴答和附加的数据。正如中本聪在邮件里面所解释的,这确实解决了拜占庭将军问题,。

在一个罕见却又常见的情况下,会出现共识分离,有两个连续的滴答与一个块有关联,这就发生了冲突。通过哪个块与下一个滴答相关联解决了这个冲突,同时将有争议的块变为“孤儿块(orphan)”。链如何继续是个概率问题(a matter of chance),这也可能间接地归因于 PoW 的时钟。

就这样

这就是区块链的 PoW(工作量证明)。它并不是一个为了让矿工赢得出块权的“乐透”,也不是为了将实际能源转换成一个有价值的概念,这些都偏离了本质。

比如矿工奖励的角度来看,虽然这些奖励激励了矿工参与,但是这并不是区块链诞生的必要因素。块哈希形成一条链,但是这与工作量并没什么关系,它是从密码学上强制保证了块的顺序。哈希链使得前一个滴答“更确定”,“更加不可抵赖”,或者简单来说,更安全。

PoW 也能使块不可更改,这是一种好的副作用,也使得隔离见证(Segregated Witness)成为可能,但是隔离见证也能通过保留签名(见证,witness)实现,所以这也是次要的。

结论

比特被的 PoW 只是一个分布式,去中心化的时钟。

如果你理解了这个解释,那么你应该能够更好地理解 PoW 与 PoS 的异同。显然,两者不具有可比性:PoS 是有关于(随机分布的)权力(authority),而 PoW 是一个时钟。

在区块链的背景下,PoW 这个名字可能是个误用,起的并不太好。这个词来源于 Hashcash 项目,它确实用于证实工作(work)。在区块链中,它主要关于可验证的花费时间。当一个人发现满足难度的哈希时,我们知道它必然会花费一些时间。实现时间延迟的方法就是“工作”,而哈希就是这段时间的证明。

PoW 是关于 time 而非 work 的事实也表明,可能存在一些其他的统计学问题,这些问题同样消耗时间,但却需要更少的能源。这也可能意味着比特币算力有些“过分”,因为我们在上面所描述的比特币时钟,在只有部分算力的情况下,也是可信的,这是这种激励结构推动了能源消耗。

如果你找到了一个方法能够同步滴答,并且需要更少的工作,这是一个价值万亿美元的问题,请一定要告诉我!

P.S. 特别感谢 UChicago Statistics 的 Sasha Trubetskoy 对上述文字的 review 和建议。

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/24034.html

相关文章

  • 浅谈 PoW 共识与 PoS 共识差异

    摘要:在本期中,我们将会进入构建加密经济背后的三大支柱之一的共识部分加密经济的三大支柱技术实现共识协议经济模型。区块链的共识节点提供的产品是安全,共识节点是网络服务的生产者。在中,未来的共识群体是由今天的共识群体决定的。 在秘猿小课堂 16-25 期,我们给读者介绍了构建加密经济网络的技术实现的两个部分,即 Cell 模型和 CKB-VM 虚拟机。在本期中,我们将会进入构建加密经济背后的三大...

    zacklee 评论0 收藏0
  • Conflux吐槽君:IOTA物联网电磁炉-让PoW耗电没有遗憾

    摘要:任何人或物联网设备想发起交易,只需要引用其他两个交易就可以了。只要好人的交易总数足够多,它就是安全的。要知道,应用场景是物联网设备,物联网设备跑真是天才的想法啊。不仅如此,这个电磁炉还能提高烹饪的安全系数。 鉴于有不少小伙伴反映,觉得区块链技术圈乱象横生,鱼龙混杂,导致大家很难去辨识哪些是真正的技术。甚至有些人,打着说技术的名号,其实自己本身都没弄懂弄明白,只是懂个皮毛,就开始拿着各种...

    seasonley 评论0 收藏0
  • Conflux吐槽君:IOTA物联网电磁炉-让PoW耗电没有遗憾

    摘要:任何人或物联网设备想发起交易,只需要引用其他两个交易就可以了。只要好人的交易总数足够多,它就是安全的。要知道,应用场景是物联网设备,物联网设备跑真是天才的想法啊。不仅如此,这个电磁炉还能提高烹饪的安全系数。 鉴于有不少小伙伴反映,觉得区块链技术圈乱象横生,鱼龙混杂,导致大家很难去辨识哪些是真正的技术。甚至有些人,打着说技术的名号,其实自己本身都没弄懂弄明白,只是懂个皮毛,就开始拿着各种...

    LeexMuller 评论0 收藏0
  • Conflux吐槽君:IOTA物联网电磁炉-让PoW耗电没有遗憾

    摘要:任何人或物联网设备想发起交易,只需要引用其他两个交易就可以了。只要好人的交易总数足够多,它就是安全的。要知道,应用场景是物联网设备,物联网设备跑真是天才的想法啊。不仅如此,这个电磁炉还能提高烹饪的安全系数。 鉴于有不少小伙伴反映,觉得区块链技术圈乱象横生,鱼龙混杂,导致大家很难去辨识哪些是真正的技术。甚至有些人,打着说技术的名号,其实自己本身都没弄懂弄明白,只是懂个皮毛,就开始拿着各种...

    testHs 评论0 收藏0

发表评论

0条评论

最新活动
阅读需要支付1元查看
<