python import cv2 import numpy as np import tensorflow as tf # 加载模型 model = tf.keras.models.load_model("yolov3.h5") # 定义类别名称 class_names = ["person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"] # 读取图像 image = cv2.imread("test.jpg") # 调整图像大小 image = cv2.resize(image, (416, 416)) # 将图像转换为张量 image = tf.convert_to_tensor(image, dtype=tf.float32) image = tf.expand_dims(image, 0) # 进行目标检测 outputs = model(image) # 处理输出结果 boxes, scores, classes, nums = outputs # 绘制检测结果 for i in range(nums[0]): box = boxes[0][i] score = scores[0][i] cls = classes[0][i] label = class_names[int(cls)] if score > 0.5: x1, y1, x2, y2 = box.numpy() x1 = int(x1 * image.shape[2]) y1 = int(y1 * image.shape[1]) x2 = int(x2 * image.shape[2]) y2 = int(y2 * image.shape[1]) cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) # 显示检测结果 cv2.imshow("image", image.numpy()[0]) cv2.waitKey(0) cv2.destroyAllWindows()在上面的代码中,我们首先加载了预训练模型,然后定义了类别名称。接下来,我们读取了一张测试图像,并将其调整为模型的输入大小。然后,我们将图像转换为张量,并将其输入到模型中进行目标检测。最后,我们处理模型的输出结果,并将检测结果绘制在原始图像上。 这就是使用 Python 和 TensorFlow 实现 YOLOv3 目标检测算法的基本步骤。当然,我们还可以对模型进行微调,以提高检测精度和速度。总之,YOLOv3 是一种非常强大的目标检测算法,它可以在许多实际应用中发挥重要作用。
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/130969.html
阅读 3303·2023-04-26 02:40
阅读 4651·2021-09-22 15:22
阅读 1595·2021-09-22 10:02
阅读 3487·2021-08-11 10:23
阅读 1396·2019-08-30 15:55
阅读 2498·2019-08-30 12:48
阅读 590·2019-08-30 11:04
阅读 709·2019-08-29 16:29