资讯专栏INFORMATION COLUMN

tensorflowlite

Developer / 2121人阅读
TensorFlow Lite是一种面向嵌入式设备和移动设备的轻量级机器学习框架,它可以将训练好的机器学习模型压缩成较小的二进制文件,以便在移动设备上运行。本文将介绍TensorFlow Lite的编程技术,包括如何将训练好的模型转换为TensorFlow Lite格式、如何在移动设备上使用TensorFlow Lite运行模型以及如何在TensorFlow Lite中使用量化技术以进一步优化模型。 1. 将模型转换为TensorFlow Lite格式 在使用TensorFlow Lite之前,需要将训练好的机器学习模型转换为TensorFlow Lite格式。可以使用TensorFlow提供的命令行工具将模型转换为.tflite格式。以下是将Keras模型转换为TensorFlow Lite模型的示例代码:
python
import tensorflow as tf

# Load Keras model
model = tf.keras.models.load_model("my_model.h5")

# Convert Keras model to TensorFlow Lite model
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()

# Save TensorFlow Lite model
with open("my_model.tflite", "wb") as f:
    f.write(tflite_model)
2. 在移动设备上使用TensorFlow Lite运行模型 将模型转换为TensorFlow Lite格式后,可以在移动设备上使用TensorFlow Lite运行模型。以下是在Android应用程序中使用TensorFlow Lite运行模型的示例代码:
java
import org.tensorflow.lite.Interpreter;
import java.nio.ByteBuffer;

// Load TensorFlow Lite model
Interpreter interpreter = new Interpreter(loadModelFile());

// Prepare input buffer
ByteBuffer inputBuffer = ByteBuffer.allocateDirect(4 * inputSize);
inputBuffer.order(ByteOrder.nativeOrder());

// Prepare output buffer
ByteBuffer outputBuffer = ByteBuffer.allocateDirect(4 * outputSize);
outputBuffer.order(ByteOrder.nativeOrder());

// Run inference
interpreter.run(inputBuffer, outputBuffer);

// Get output
float[] output = new float[outputSize];
outputBuffer.asFloatBuffer().get(output);
在上面的代码中,首先使用`Interpreter`类加载TensorFlow Lite模型。然后,准备输入和输出缓冲区,并调用`run`方法来运行推理。最后,从输出缓冲区中获取结果。 3. 在TensorFlow Lite中使用量化技术以进一步优化模型 量化是一种可以将浮点数模型转换为整数模型的技术,这有助于减小模型的大小和提高模型在嵌入式设备上的速度和效率。TensorFlow Lite提供了量化技术的支持,可以使用命令行工具或API来进行量化。以下是使用命令行工具进行量化的示例代码:
python
import tensorflow as tf

# Load Keras model
model = tf.keras.models.load_model("my_model.h5")

# Convert Keras model to TensorFlow Lite model with float16 quantization
converter = tf.lite.TFLiteConverter.from_kerasTensorFlow Lite is a lightweight machine learning framework designed for embedded and mobile devices. It allows you to compress trained models into smaller binary files for running on mobile devices. This article will introduce the programming techniques of TensorFlow Lite, including how to convert a trained model to TensorFlow Lite format, how to use TensorFlow Lite to run the model on mobile devices, and how to use quantization techniques to further optimize the model in TensorFlow Lite.

1. Convert the model to TensorFlow Lite format

Before using TensorFlow Lite, you need to convert the trained machine learning model to TensorFlow Lite format. You can use the command-line tools provided by TensorFlow to convert the model to the .tflite format. Here is an example code for converting a Keras model to a TensorFlow Lite model:

python import tensorflow as tf # Load Keras model model = tf.keras.models.load_model("my_model.h5") # Convert Keras model to TensorFlow Lite model converter = tf.lite.TFLiteConverter.from_keras_model(model) tflite_model = converter.convert() # Save TensorFlow Lite model with open("my_model.tflite", "wb") as f: f.write(tflite_model)

2. Run the model with TensorFlow Lite on mobile devices

After converting the model to TensorFlow Lite format, you can use TensorFlow Lite to run the model on mobile devices. Here is an example code for running the model with TensorFlow Lite in an Android application:

java import org.tensorflow.lite.Interpreter; import java.nio.ByteBuffer; // Load TensorFlow Lite model Interpreter interpreter = new Interpreter(loadModelFile()); // Prepare input buffer ByteBuffer inputBuffer = ByteBuffer.allocateDirect(4 * inputSize); inputBuffer.order(ByteOrder.nativeOrder()); // Prepare output buffer ByteBuffer outputBuffer = ByteBuffer.allocateDirect(4 * outputSize); outputBuffer.order(ByteOrder.nativeOrder()); // Run inference interpreter.run(inputBuffer, outputBuffer); // Get output float[] output = new float[outputSize]; outputBuffer.asFloatBuffer().get(output);

In the above code, the TensorFlow Lite model is first loaded with the `Interpreter` class. Then, input and output buffers are prepared, and the `run` method is called to run the inference. Finally, the output is obtained from the output buffer.

3. Use quantization techniques in TensorFlow Lite to further optimize the model

Quantization is a technique that can convert a floating-point model into an integer model, which helps reduce the size of the model and improve its speed and efficiency on embedded devices. TensorFlow Lite provides support for quantization techniques, and you can use the command-line tools or APIs for quantization. Here is an example code for quantization using command-line tools:

python import tensorflow as tf # Load Keras model model = tf.keras.models.load_model("my_model.h5") # Convert Keras model to TensorFlow Lite model with float16 quantization converter = tf.lite.TFLiteConverter.from_keras_model(model) converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.target_spec.supported_types = [tf.float16] tflite_model = converter.convert() # Save TensorFlow Lite model with open("my_model.tflite", "wb") as f: f.write(tflite_model) ``` In the above code, the `optimizations` parameter is set to `tf.lite.Optimize.DEFAULT` to enable default optimizations, and the `supported_types` parameter is set to `[tf.float16]` to use float16 quantization. Finally, the TensorFlow Lite model is saved to a binary file. In conclusion, TensorFlow Lite is a powerful tool for deploying machine learning models on embedded and mobile devices. By using TensorFlow Lite, you can

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/130620.html

相关文章

  • 今天被TensorFlowLite刷屏了吧,偏要再发一遍

    摘要:近几年来,由于其作为机器学习模型的使用已成倍增长,所以移动设备和嵌入式设备也出现了部署需求。使机器学习模型设备能够实现低延迟的推理。设计初衷轻量级允许在具有很小的二进制大小和快速初始化启动的机器学习模型设备上进行推理。 谷歌今天终于发布了TensorFlow Lite 的开发者预览!该项目是在5月份的I/O开发者大会上宣布的,据Google网站描述,对移动和嵌入式设备来说,TensorFlo...

    ingood 评论0 收藏0
  • 玩转TensorFlow Lite:有道云笔记实操案例分享

    摘要:如何进行操作本文将介绍在有道云笔记中用于文档识别的实践过程,以及都有些哪些特性,供大家参考。年月发布后,有道技术团队第一时间跟进框架,并很快将其用在了有道云笔记产品中。微软雅黑宋体以下是在有道云笔记中用于文档识别的实践过程。 这一两年来,在移动端实现实时的人工智能已经形成了一波潮流。去年,谷歌推出面向移动端和嵌入式的神经网络计算框架TensorFlowLite,将这股潮流继续往前推。Tens...

    Hanks10100 评论0 收藏0

发表评论

0条评论

最新活动
阅读需要支付1元查看
<