资讯专栏INFORMATION COLUMN

Elasticsearch 运维实践

IT那活儿 / 1831人阅读
Elasticsearch 运维实践

点击上方“IT那活儿”公众号,关注后了解更多内容,不管IT什么活儿,干就完了!!!

 


PART1

文章前言
对于Elasticsearch的学习,需要清楚的明白它的每个核心概念,由浅入深的了解,才能更好的掌握这门技术。
下面先简单罗列下Elasticsearch的核心概念:

 


PART2

Elasticsearch数据组织
2.1 逻辑组织
如下图所示,Elasticsearch使用indexdoc_type来组织数据。doc_type中的每条数据称为一个document,是一个JSON Object,相关的schema信息通过mapping来定义。mapping不仅仅包括数据类型的定义,还有很多其他元信息的设置,它们共同决定了数据如何被存储和索引。
这四个概念实现了Elasticsearch的逻辑数据组织,假设有一批结构化或半结构化数据需要存储,我们会先对数据进行分类,设计相应的index与doc_type,再为每个doc_type设置相关的mapping信息。如果不指定mapping,Elasticsearch会使用默认值,并自动为你推导每个字段的类型,即支持schema free的特性。
但是,这种灵活性也会带来一些问题,一方面会失去对数据的控制,即会越来越不清楚你的数据结构,另一方面,自动推导出来数据类型可能不是预期的,会带来写入和查询问题。
所以,笔者建议,尽最大可能对schema加以约束。
通常情况下,我们都会拿Elasticsearch的这些概念跟关系型数据库Mysql来做对比以便更好的理解,比如index等价于database,doc_type等价于table,mapping等价于db schema。
但是需要注意的是:对于关系型数据库而言,table与table之间是完全独立的,不同table的schema是完全隔离的,而Elasticsearch中的doc_type则不是。同一个index下不同doc_type中的字段在底层是合并在一起存储的,意味着假设两个doc_type中都有一个叫name的字段,那么这两个字段的mapping必须一样。
基于这个原因,Elasticsearch官方从6.0开始淡化doc_type的概念,推荐一个index只拥有一个doc_type,并计划在8.x完全废弃doc_type。因此,在当前的index设计中,最好能遵循这个规则。
2.2 物理组织
Elasticsearch是一个分布式系统,其数据会分散存储到不同的节点上。为了实现这一点,需要将每个index中的数据划分到不同的块中,然后将这些数据块分配到不同的节点上存储。这里的数据块,就是shard。通过"分"的思想,可以突破单机在存储空间和处理性能上的限制,这是分布式系统的核心目的。
而对于分布式存储而言,还有一个重要特性是"冗余",因为分布式的前提是:接受系统中某个节点因为某些故障退出。
为了保证在故障节点退出后数据不丢失,同一份数据需要拷贝多份存在不同节点上。因此,shard从角色上划分为primary shardreplica shard两种,数据会首先写入primary shard,然后同步到replica shard中。
shard是Elasticsearch中最小的数据分配单位,即一个shard总是作为一个整体被分配到某个节点,而不会只分配其中一部分。
那么,shard中的数据又是如何组织的?
答案是segment。一个shard包含一组segment,segment是最小的数据单元,Elasticsearch每隔一段时间产生一个新的segment,里面包含了新写入的数据。segment是immutable的,即不可改变,这样设计的考量是:一方面,不支持修改就不用对读写操作加锁,省去了相关开销;另一方面,因为文件内容不会修改,可以更好的利用filesystem cache进行缓存,提高查询性能。
但是,任何设计都不是完美的,伴随而来的问题是:如果segment不可修改,怎么实现数据的更新与删除呢?这个问题将在文中Elasticsearch的"数据写入"内容中说到。 

PART3

Elasticsearch数据分布
上面说到Elasticsearch将每个index中的数据划分到不同的shard中,然后将shard分配到不同的节点上,实现分布式存储。
这里面涉及到两个概念:一个是数据到shard的映射(route),另一个是shard到节点的映射(shard allocate)。
一方面:插入一条数据时,Elasticsearch会根据指定的key来计算应该落到哪个shard上。默认key是自动分配的id,可以自定义,比如在业务中采用CompanyID作为key。因为primary shard的个数是不允许改变的,所以同一个key每次算出来的shard是一样的,从而保证了准确定位。
shard_num = hash(_routing) % num_primary_shards


另一方面:master节点会为每个shard分配相应的data节点进行存储,并维护相关元信息。通过route计算出来的shard序号,在元信息中找到对应的存储节点,便可完成数据分布。shard allocate的映射关系并不是完全不变的,当检测到数据分布不均匀、有新节点加入或者有节点挂掉等情况时就会进行调整,称为relocate


PART4

Elasticsearch集群角色
一个分布式系统,是由多个节点各司其职、相互协作完成整体服务的,从架构上可以分为有中心管理节点和无中心管理节点两种,Elasticsearch属于前者。中心管理节点负责维护整个系统的状态和元信息,为了保证高可用性,通常是从一组候选节点中选举出来的,而非直接指定。
按照职责,Elasticsearch将节点分为三种:
  • master-eligible节点

  • data节点

  • ingest节点

master-eligible节点就是中心节点的候选人,通过选举算法从这些候选人中推选出大家公认的中心节点。
data节点负责数据存储、查询,也是整个系统中负载最重的部分。
ingest节点是针对Elasticsearch一个特定功能而设定的,Elasticsearch支持在数据写入前对数据进行相关的转换、处理,而这类节点就是负责这样的工作,从笔者遇到的实践来看,使用这类节点的并不多。
这三种角色是通过配置来设定的,可以同时设置到同一个节点上,即一个节点可以同时具备这三种功能。但是这种做法只适用于数据量小、业务较轻的场景,因为不同角色承担的功能所带来的负载是不同的,很可能因为数据写入/查询负载较重导致master节点通信受到影响,从而导致系统不稳定。
所以,推荐将不同角色分离开,某个节点只负责其中一个功能,通常会设置dedicated master-eligible节点、data/ingest节点。前者负载很轻,只需要分配较低配置的机器,而后者对CPU、IO、Memory要求较高,需要配置更好的机器,实践中根据性能测试结果来调整。
前面说到,中心节点(master)是从一组候选人(master-eligible)中选举出来的,那设置多少个候选人是合理的?
原则是要保证任何时候系统只有一个确定的master节点。考虑到一致性,只有被半数以上候选节点都认可的节点才能成为master节点,否则就会出现多主的情况。只有1个候选节点显然不能保证高可用;有2个时,半数以上(n/2+1)的个数也是2,任何一个出现故障就无法继续工作了;有3个时,半数以上的值仍然是2,恰好可以保证master故障或网络故障时系统可以继续工作。
因此,3个dedicated master-eligible节点是最小配置,也是目前业界标配。
Elasticsearch以REST API形式对外提供服务,数据写入与查询都会发送HTTP(S)请求到服务端,由负载均衡将请求分发到集群中的某个节点上(任何非dedicated master-eligible节点)。
如下图所示,节点1收到请求后,会根据相关的元信息将请求分发到shard所在的节点(2和3)上进行处理,处理完成后,节点2和3会将结果返回给节点1,由节点1合并整理后返回给客户端。这里的节点1扮演着协调者的角色,称为coordinate节点,任何节点在收到请求后就开始发挥协调者的角色,直到请求结束。在实际使用中,可以根据需要增加一些专用的coordinate节点,用于性能调优。
 

PART5

Elasticsearch数据写入
通过上面的整理可知,Elasticsearch数据写入的大致过程为:当有数据写入时,请求会先到达集群中的某个节点上,由该节点根据routing信息和元信息将相应的数据分发到对应的shard所在的节点上,可能是一个也可能是多个节点,取决于写入的数据。这些节点在收到分发出来的请求后,会经过一系列过程,最终将数据以segment的形式落地到磁盘上。
Elasticsearch数据写入过程包含同步与异步两个过程,如下图所示:
同步过程:是指在请求返回前做的事情,即包含在一个HTTP请求的过程中,客户端需要等其做完才能拿到结果。简单来看,这个过程需要完成三件事:
  • 第一,将操作记录写入到translog中,我们后面再来谈它的作用;

  • 第二,根据数据生成相应的数据结构,并写入到in-memory buffer,注意是写入到一个内存buffer中,不是磁盘;

  • 第三,将数据同步到所有replica shard中。完成这些之后,就会生成相应的结果返回给coordinate节点了。

异步过程:一般来说,写磁盘很慢,且非常耗费CPU与IO,在同步过程中,为了让请求尽快返回,并没有将数据直接落盘。Elasticsearch的最小数据单元是segment,而此时数据还在in-memory buffer中,因此这部分数据是不能被查询请求访问到的。只有当发生refresh动作,才会产生一个新的segment,将内存buffer中的数据写入到里面,同时清空buffer。默认refresh的时间间隔是1秒,可以配置,需要在实时性与性能之间进行权衡。此时虽然已经生成了新的segment文件,但是只是停留在filesystem cache中,并没有真正的落到磁盘中。这些动作的目的都是为了将"写磁盘"这件事尽可能的延后并变得低频,但是数据一直留在内存中始终是不安全的,很容易因为断电等原因导致数据丢失,因此每隔一段时间,Elasticsearch会真正做一次磁盘flush,完成数据的持久化。从写入请求过来到数据最终落盘,中间很长一段时间数据是停留在内存中的,那么如果在此期间机器断电岂不是会丢失数据?为了解决这个问题,就要用到上面所述的translog了。在请求返回前,必须要将操作记录写入到translog中并落盘,保证机器重启后可以恢复数据。显然这件事本身是会消耗性能的,但这也是保证数据不丢失的一个牺牲了,必须要做的。
segment是由refresh动作产生的,因此随着时间推移,会产生很多小segment,而每个segment都需要占用一定的资源,比如文件句柄、缓存等等,过多的segment势必会导致性能下降。因此每隔一段时间,Elasticsearch会做一次segment merge,将多个小的segment合并成一个大的segment。
最后再来看下前面提到的一个问题:因为segment是不可改变的,如何实现数据更新与删除?以删除为例,Elasticsearch将要删除的数据记录到一个叫.del文件中,每次查询时会将匹配到的数据跟这个文件中的数据做一次对比,去掉被删除的数据。直到segment merge时,会将.del文件和相应的segment文件一起加载进行合并,这时才真正删除了数据。

 


PART6

Elasticsearch存储结构
在介绍Elasticsearch存储结构之前,先来看看两种常见的查询需求
一种是精确匹配,比如查找作者姓名为"Bruce"的信息;
一种是全文检索,比如从1000个文章的标题中搜索出包含"分布式"的文章。
对于第一个需求,只需要将每个名字作为一个term即可,"是"或"不是";对于第二个,如果想知道标题中是否包含"分布式",就需要提前将每个标题分解为多个term,比如"浅谈分布式存储系统",可能会产生"浅谈"、"分布式"、"存储"、"系统"等多个term,具体取决于使用了哪一种分析器。
不管哪种情况,最后都是产生一组term,问题是用一个什么样的存储结构可以实现快速检索。这就是Elasticsearch的核心:inverted index。inverted index是一个二维结构,如下所示,包含一组排好序的term,每个term都关联有一些信息,这些信息指出哪些document包含了这个term。当需要查询包含关键词"分布式"的数据时,系统会先从inverted index中找出对应的term,获取到其对应的document id,然后就可以根据document id找出其信息了。
sample data:
1. {"author": "Bruce", "title": "浅谈分布式存储系统"}
2. {"author": "Bruce", "title": "常见的分布式系统"}
3. {"author": "David", "title": "分布式存储原理"}
 
inverted index for field "author":
-------------------------------
term | doc id
-------------------------------
Bruce |
   1, 2
David | 3
-------------------------------
 
inverted index for field "title":
 -------------------------------
term |
   doc id
-------------------------------
常见 | 3
存储 |
   1, 3
分布式 | 1, 2, 3
浅谈 |
   1
系统 | 1, 2
原理 |
   3

-------------------------------


通过inverted index,就可以根据关键词快速搜索出相关的document。除了这种查询,还有一种常见的需求是求聚合,即关系型数据库中的GROUP BY功能。比如查看写"分布式"相关的文章最多的10位作者,首先根据上述方法通过inverted index找到与"分布式"相关的所有document,然后需要对这些document的作者进行归类并计数,最后再排序取出TOP10。在"归类"时,我们需要知道每个document的作者名字,但是通过inverted index是无法直接查找到的,因为他是term-to-doc_id形式的,而我们这里需要的是doc_id-to-term形式的数据,只有通过循环迭代才能知道某个document的作者姓名是什么,这样做的效率无疑是很低的。

为了解决聚合的效率问题,Elasticsearch建立了一个与invaerted index反向的数据结构:doc values,如下所示:
-------------------------------
doc id | terms
-------------------------------
1 | Bruce
2 | Bruce
3 | David
-------------------------------
inverted index和doc values都是在数据写入时建立的,即上述的同步过程第二步中完成的。它们都是针对per segment而言的,数据最终以文件的形式存储,并且是immutable不可改变的。
数据查询时,如果每次都去读取磁盘文件,其效率显然是无法接受的,Elasticsearch将这些文件内容映射到内存中,通过充分利用文件系统缓存来提高查询性能,因此在实践中建议保留足够的memory给系统。

PART7

Elasticsearch重要配置说明
elasticsearch的基础配置信息在elasticsearch.yml中,下面列出一些重要的配置。
7.1 集群名称
默认情况下elasticsearch的集群名称是elasticsearch,在实际应用中应该设置一个有意义的集群名称:
cluster.name: elasticsearch-cluster-demo

7.2 节点信息

elasticsearch节点是elasticsearch集群中的某一个节点,可由基本的三个信息描述,节点名称(node.name),是否为主节点(node.master),是否为数据节点(node.data)。
默认情况下,节点名称在每次启动的时候会随机生成,所以应该为节点设置一个有意义的名称,以方便排查问题。而节点又分为主节点、数据节点、客户端节点、部落节点,下面是一个节点(只为主节点)的配置样例:
node.name: node-master-one
node.master: true
node.data: false


7.3 数据存储路径/日志路径


默认情况下,elasticsearch数据和日志的存储路径是在安装目录下,为了防止被误删掉,应该重新设置路径。配置样例如下:

# Path to directory where to store the data (separate multiple locations by comma):
# es data 存储路径(多个路径可用,隔开)
path.data: /data/elasticsearch-cluster/elasticsearch-master-one/data
#
# Path to log files:
# log存储路径
path.logs: /data/elasticsearch-cluster/elasticsearch-master-one/logs
7.4 网络绑定监听
在搭建elasticsearch的时候,也应该去修改其监听的主机IP,至于端口可以用默认的:
# Set the bind address to a specific IP (IPv4 or IPv6):
# 网路监听
network.host: 0.0.0.0
http.port: 9200
transport.tcp.port: 9300
7.5 最小主节点数
如果是搭建elasticsearch集群,那么应该设置最小主节点这个设置,以便防止脑裂现象:多个主节点同时存在与一个集群(一个集群只允许有一个主节点)。集群的主节点是集群的最高统治者,控制着索引的创建和分片的移动策略等;如果一个集群出现多个主节点,那么就好比一个团队出现两个leader一样,原本的一个整体被划分,对于elasticsearch集群来讲就是原本的分片(数据)被分开,这样数据就可能出现不完整性。
集群的主节点是靠所有有资格竞选主节点的节点(即节点信息设置node.master为true)投票选举出来的,所以现在获得的投票数量应该大于总票数半。所以在elasticsearch中,是设定当候选的master节点达到设定的法定个数的时候才进行主节点选举:法定个数 = master-eligible nodes / 2 + 1
# Prevent the "split brain" by configuring the majority of nodes (total number of master-eligible nodes / 2 + 1):
# 最小主节点个数
discovery.zen.minimum_master_nodes: 2
因为elasticsearch节点是可以动态删除和添加的,所以这个设置是可以通过API动态设置的。
7.6 集群恢复
elasticsearch集群在启动的时候,会做数据平衡操作。比如,一个10个节点5/1分片策略(5个分片,5个副本分片)的集群,平衡下来是每个节点一个分片,如果集群在重启的时候,有5个节点因为网络原因一段时间内未启动成功,可能会出现一种情况:启动的5个节点中有3个主分片,2个副分片。这时候就会出现主分片数据不完整和不均匀分布,此时集群会自动做数据的平衡操作。
若一段时间后,另外的5个节点重新上线了,发现本身的数据在集群中已存在,则又会做平衡操作。这样,两次数据平衡移动操作,会占用磁盘和带宽,若数据量大则影响可想而知。所以可以做如下控制,来保障集群重启时数据恢复花费时间尽可能短:
1)设置集群可提供服务的条件:最小上线节点数。
gateway.recover_after_nodes: 8
2)设置集群数据恢复条件:等待多少分钟,或这有多少个节点上线(具体取决与条件的先达性)。
gateway.expected_nodes: 10
gateway.recover_after_time: 5m
7.7 集群节点发现
使用单播方式,为节点提供其应该去尝试连接的节点列表,连接成功,得到集群的状态信息,便加入集群。节点列表中可以不是全部节点,只要能保障能进入集群即可(可以选用部分候选主节点)。
# Pass an initial list of hosts to perform discovery when new node is started:
# The default list of hosts is ["XXX.X.0.1", "[::1]"]
# 候选主节点ip:port
discovery.zen.ping.unicast.hosts: ["XXX.X.0.1:9300"]
7.8 推迟分片分配
elasticsearch集群在运行的时候,当有节点加入或离开的时候,会进行分片均衡操作,这个过程有些像集群重启时的数据恢复过程,可能会导致出现多次分片在均衡的过程,所以需要设置延迟分片分配,以尽量避免该情形出现。
# 延5min
delayed_timeout: 5m


该设置同样可以通过API的形式动态设置。

7.9 禁止内存交换
内存交换会影响性能,elasticsearch官方推荐允许JVM锁住内存,禁止出现内存交换的情况:
bootstrap.mlockall: true
7.10 其他配置
1)Elasticsearch JVM内存
elasticsearch默认的安装内存是1g,这个可以根据需要来设置,在elasticsearch的config目录中的jvm.options中:
# Xms represents the initial size of total heap space
# Xmx represents the maximum size of total heap space
 
-Xms1g
-Xmx1g
当然,这个内存不是随便设置的,推荐的是最大值和最小值一样,以避免堆内存改变时浪费系统资源。其次是即便硬件资源足购大,也不要分配超过32G(具体原因可参考Elasticsearch权威指南:不要超过32GB),可以多给底层lucenen多分点。
2)文件描述符和MMap内存映射
elasticsearch在节点在通信时会产生大量套接字,以及elasticsearch底层的lucene使用了大量文件,所以需要足够的文件描述符,而linux中一般都是做有限制的,所以应该修改为大一点的值。可以修改文件/etc/security/limits.conf,添加如下配置,配置值设为需要的值即可:
#       
#四个元素的意义在该文件中均有详细描述
elasticsearch soft nofile 65536
elasticsearch hard nofile 65536


elasticsearch对文件混合使用了NioFs(非阻塞文件系统)和 MMapFs ( 内存映射文件系统),所以要保障有足够的虚拟内存用于映射。可以直接修改/etc/sysctl.conf文件添加如下配置,配置值设为需要的值。下面内容添加到sysctl.conf文件中后,执行"sysctl -p"命令使配置生效即可。


vm.max_map_count=655360
这两项如果在启动elasticsearch之前不进行设置的话,在启动elasticsearch的时候也可能会直接报相关的error以致无法启动成功。
3)GC配置和线程池
这两个配置,es官方强烈建议不要做修改,具体原因可参考:Elasticsearch权威指南:不要触碰这些配置

PART8

Elasticsearch集群异常分析
随着业务的增长与发展,不同的Elasticsearch集群承担着多厚多样的功能需求。尤其是当集群规模增长、业务庞大时,需要耗费大量的精力运维集群。最坏的情况,Elasticsearch集群崩溃,无法正常承担各项业务。导致ES集群崩溃的大多数原因是master节点、数据节点的宕机。下面总结节点:
8.1 节点负载过高,导致节点失联
以Elasticsearch集群的数据节点与master节点为例,当有任何一个节点负载过高,都可能导致单节点宕机从而挑战集群的可用性。master节点负载高会严重影响到集群稳定性,可能发生master漂移,节点上下线,分片丢失,负载增高,甚至阻塞读写等。
应对措施:可以确认下是否有大量频繁的修改,创建,删除索引操作,并尽量避免这种行为。可以考虑使用更高配置的节点用增加系统高稳定性。因此,我们需要检测过去一段时间内Elasticsearch节点负载情况(脚本方式等),提前获知并拯救集群于崩溃边缘。
8.2 索引副本丢失,数据可靠性受损
索引的副本一方面是保证数据的可靠性,保证在数据丢失的状态下依旧可以恢复如初;一方面副本数的增加可提高查询的性能。在存储空间占用过满时,极有可能导致索引副本丢失。因此检查副本的存在状态,可帮助提高数据的可靠性。在Elasticsearch集群重启的过程中,只有在副本数量完整时才能保证服务的持续进行。
应对措施:监控Elasticsearch集群基本颜色状态,检查shard分片是否丢失。颜色不正常的索引会影响数据读写。索引副本丢失(YELLOW)会影响到数据的可靠性和读写性能;索引主分片丢失(RED)会导致数据丢失。所以要极度重视和关注Elasticsearch集群颜色状态的监控,遇到异常,及时处理!
8.3 数据写入失败,集群压力过大
在写操作进行的过程中,可能会因Elasticsearch集群压力,导致读写任务堆积过多。如果在此情况下继续增加写入,则可能会引起集群的崩溃。检查集群写数据是否有堆积,如果写入存在堆积,则会造成RulkReject异常,可能会导致数据丢失,且会造成系统资源消耗严重。
应对措施:通过调用线程池查看实际成功、失败任务情况,使用分批写入的方式解决写入堆积困境,给集群减压。可以通过ES_API查看队列情况,GET _cat/thread_pool/bulk?v,建议增加更多的数据解读或降低bulk写入频率和大小。 

PART9

Elasticsearch集群性能提升
如何在固定配置的情况下更大程度发挥集群可用性能,是我们最关心的问题。从Elasticsearch内部逻辑与架构,数据节点是任务载体与执行依托,shard是索引与搜索的主要承担者,副本是提升性能的重要抓手,分批写入与防止稀疏是必备方式。如何提升集群性能,下面从数据节点负载、shard合理性两方面简单做下说明。
9.1 数据节点抓偏离,防止单节点瓶颈
在各数据节点负载均衡的条件下,性能会趋向于最优的实践。如果发生单节点负载过高,与其他节点产生较大差异,则高负载节点可能成为"拖油瓶",拉低整体集群数据节点任务执行,甚至存在脱离集群的风险。监控Elasticsearch集群当天的节点负载偏差是否过大,节点间负载不一致会使得某个节点成为系统瓶颈,影响集群稳定性。应尝试调整shard分片数或数据节点数,尽可能保证两者均衡。
9.2 shard、segment合理性评估,升性能调负载
不同的Elasticsearch集群应用场景对性能承载着不同的需求。索引的载体就是shard,搜索结果的返回也是多个shard共同的返回结果。Shard数与节点间的负载均衡、查询性能和存储空间利用均有着非常重要的关系。shard数和大小不合理会极大的影响索引读写性能,shatd过少会影响索引读写性能,shard过多会占用较多系统资源。通过读取索引shard、节点shard,检查判断是否因索引segment过多导致碎片化,引发离线数据写入过慢,从而在适当的时间执行段合并操作,即调整部分索引的shard数,提升离线数据的写入速度,均衡负责,提升性能,节省空间。

 


END



 



本文作者:李博文

本文来源:IT那活儿(上海新炬王翦团队)

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/129509.html

相关文章

  • 利用ELK搭建Docker容器化应用日志中心

    摘要:概述应用一旦容器化以后,需要考虑的就是如何采集位于容器中的应用程序的打印日志供运维分析。 showImg(https://segmentfault.com/img/remote/1460000014146680); 概述 应用一旦容器化以后,需要考虑的就是如何采集位于Docker容器中的应用程序的打印日志供运维分析。典型的比如 SpringBoot应用的日志 收集。本文即将阐述如何利...

    周国辉 评论0 收藏0
  • FastD 最佳实践五: 构建ELK日志分析

    摘要:点击前往中文地址先决条件简单安装下载地址下载或者其他都可以。版本处理方案新建格式日志文件。配置日志会随着配置进行生成,结果如下忽略上述日志内容,程序看得懂即可配置推送到需要根据业务场景进行配置,现在显示最简单的配置。 过去咱们开发中,对日志这个环节其实并不太重视,直到有一天,应用出现异常,这个时候才想起来日志,但很可惜,为时已晚。 咱们做运维和开发,除了救火,还需要防火,因此一些防范的...

    djfml 评论0 收藏0

发表评论

0条评论

IT那活儿

|高级讲师

TA的文章

阅读更多
最新活动
阅读需要支付1元查看
<