扩展GROUP BY概述
Oracle扩展GROUP BY允许使用SQL语句对数据汇总结果进行多维展现,从而生成复杂的报表,为决策者提供有效的数据支持。主要表现在:
通过SQL语句对上述功能的组合使用,就可以实现制作复杂的多维分析报表的功能。针对不同维度的报表统计,使用扩展GROUP BY的强大功能很容易实现,而且SQL编写更简单,性能也比同等的UNION ALL更好,在后面的内容中,我们会见识到强大的扩展GROUP BY功能。
CUBE
C0n + C1n + C2n + … + Cnn = 2n
SELECT … GROUP BY CUBE(grouping_column_reference_list)
SELECT a.dname,b.job, SUM(b.sal) sum_sal
FROM dept a,emp b
WHERE a.deptno = b.deptno
GROUP BY CUBE(a.dname,b.job);
DNAME JOB SUM_SAL
---------------------------- ------------------ ----------
24925
CLERK 3050
ANALYST 3000
MANAGER 8275
SALESMAN 5600
PRESIDENT 5000
SALES 9400
SALES CLERK 950
SALES MANAGER 2850
SALES SALESMAN 5600
RESEARCH 6775
RESEARCH CLERK 800
RESEARCH ANALYST 3000
RESEARCH MANAGER 2975
ACCOUNTING 8750
ACCOUNTING CLERK 1300
ACCOUNTING MANAGER 2450
ACCOUNTING PRESIDENT 5000
已选择18行。
执行计划
----------------------------------------------------------
Plan hash value: 2432972551
-------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 12 | 336 | 5 (20)| 00:00:01 |
| 1 | SORT GROUP BY | | 12 | 336 | 5 (20)| 00:00:01 |
| 2 | GENERATE CUBE | | 12 | 336 | 5 (20)| 00:00:01 |
| 3 | SORT GROUP BY | | 12 | 336 | 5 (20)| 00:00:01 |
| 4 | NESTED LOOPS | | 12 | 336 | 4 (0)| 00:00:01 |
| 5 | TABLE ACCESS FULL | EMP | 12 | 180 | 3 (0)| 00:00:01 |
| 6 | TABLE ACCESS BY INDEX ROWID| DEPT | 1 | 13 | 1 (0)| 00:00:01 |
|* 7 | INDEX UNIQUE SCAN | PK_DEPT | 1 | | 0 (0)| 00:00:01 |
-------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
7 - access("A"."DEPTNO"="B"."DEPTNO")
CUBE对两列操作,对应4个分组级别,最终对各种可能性分组进行统计,获得多维度更加精细的数据统计结果。
SELECT a.dname,b.job, SUM(b.sal) sum_sal
FROM dept a,emp b
WHERE a.deptno = b.deptno
GROUP BY a.dname,CUBE(b.job);
DNAME JOB SUM_SAL
---------------------------- ------------------ ----------
SALES 9400
SALES CLERK 950
SALES MANAGER 2850
SALES SALESMAN 5600
RESEARCH 6775
RESEARCH CLERK 800
RESEARCH ANALYST 3000
RESEARCH MANAGER 2975
ACCOUNTING 8750
ACCOUNTING CLERK 1300
ACCOUNTING MANAGER 2450
ACCOUNTING PRESIDENT 5000
已选择12行。
CUBE像ROLLUP一样,可以实现多维数组分析统计工作,而且CUBE是对所有可能性的组合情况进行统计,从而生成交叉报表,CUBE分组级别更多,结果更精细,从而为决策者提供强大的数据支撑,为实现灵活的报表提供保障。
GROUPING SETS实现小计
SELECT … GROUP BY GROUPING SETS(grouping_column_reference_list)
SELECT to_char(b.hiredate,yyyy) hire_year,a.dname,b.job, SUM(sal) sum_sal
FROM dept a,emp b
WHERE a.deptno = b.deptno
GROUP BY GROUPING SETS(to_char(b.hiredate,yyyy),a.dname,b.job);
HIRE_YEA DNAME JOB SUM_SAL
-------- ---------------------------- ------------------ ----------
CLERK 3050
SALESMAN 5600
PRESIDENT 5000
MANAGER 8275
ANALYST 3000
ACCOUNTING 8750
RESEARCH 6775
SALES 9400
1980 800
1982 1300
1981 22825
已选择11行。
执行计划
----------------------------------------------------------------------------------------------
Plan hash value: 18386332
-------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-------------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 12 | 384 | 15 (20)| 00:00:01 |
| 1 | TEMP TABLE TRANSFORMATION | | | | | |
| 2 | LOAD AS SELECT | | | | | |
| 3 | NESTED LOOPS | | 12 | 432 | 4 (0)| 00:00:01 |
| 4 | TABLE ACCESS FULL | EMP | 12 | 276 | 3 (0)| 00:00:01 |
| 5 | TABLE ACCESS BY INDEX ROWID| DEPT | 1 | 13 | 1 (0)| 00:00:01 |
|* 6 | INDEX UNIQUE SCAN | PK_DEPT | 1 | | 0 (0)| 00:00:01 |
| 7 | LOAD AS SELECT | | | | | |
| 8 | HASH GROUP BY | | 1 | 19 | 3 (34)| 00:00:01 |
| 9 | TABLE ACCESS FULL | SYS_TEMP_0FD9D6612_4AC9B4F | 1 | 19 | 2 (0)| 00:00:01 |
| 10 | LOAD AS SELECT | | | | | |
| 11 | HASH GROUP BY | | 1 | 22 | 3 (34)| 00:00:01 |
| 12 | TABLE ACCESS FULL | SYS_TEMP_0FD9D6612_4AC9B4F | 1 | 22 | 2 (0)| 00:00:01 |
| 13 | LOAD AS SELECT | | | | | |
| 14 | HASH GROUP BY | | 1 | 17 | 3 (34)| 00:00:01 |
| 15 | TABLE ACCESS FULL | SYS_TEMP_0FD9D6612_4AC9B4F | 1 | 17 | 2 (0)| 00:00:01 |
| 16 | VIEW | | 1 | 32 | 2 (0)| 00:00:01 |
| 17 | TABLE ACCESS FULL | SYS_TEMP_0FD9D6613_4AC9B4F | 1 | 32 | 2 (0)| 00:00:01 |
-------------------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
4 - access("SYS_TBL_$2$"."DEPTNO"="SYS_TBL_$1$"."DEPTNO")
SELECT a.dname,to_char(b.hiredate,yyyy) hire_year,b.job, SUM(sal) sum_sal
FROM dept a,emp b
WHERE a.deptno = b.deptno
GROUP BY a.dname, GROUPING SETS(to_char(b.hiredate,yyyy),b.job);
DNAME HIRE_YEA JOB SUM_SAL
---------------------------- -------- ------------------ ----------
SALES MANAGER 2850
SALES CLERK 950
ACCOUNTING MANAGER 2450
ACCOUNTING PRESIDENT 5000
ACCOUNTING CLERK 1300
SALES SALESMAN 5600
RESEARCH MANAGER 2975
RESEARCH ANALYST 3000
RESEARCH CLERK 800
RESEARCH 1981 5975
SALES 1981 9400
ACCOUNTING 1981 7450
ACCOUNTING 1982 1300
RESEARCH 1980 800
已选择14行。
SELECT a.dname,b.job, SUM(sal) sum_sal
FROM dept a,emp b
WHERE a.deptno = b.deptno
GROUP BY GROUPING SETS(ROLLUP(a.dname),ROLLUP(b.job));
DNAME JOB SUM_SAL
---------------------------- ------------------ ----------
CLERK 3050
SALESMAN 5600
PRESIDENT 5000
MANAGER 8275
ANALYST 3000
ACCOUNTING 8750
RESEARCH 6775
SALES 9400
24925
24925
SELECT a.dname,NULL job, SUM(sal) sum_sal
FROM dept a,emp b
WHERE a.deptno = b.deptno
GROUP BY ROLLUP(a.dname)
UNION ALL
SELECT NULL dname,b.job, SUM(sal) sum_sal
FROM dept a,emp b
WHERE a.deptno = b.deptno
GROUP BY ROLLUP(b.job);
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/129100.html
摘要:当向传入一列时,会得到一个总计行。结果当向传递两列时,将会按照这两列进行分组,同时按照第一列的分组结果返回小计行。结果可以看出来结果是按照工厂和部门分别分组汇总的。选择的就表示两列都不为空。 Group By Group By 谁不会啊?这不是最简单的吗?越是简单的东西,我们越会忽略掉他,因为我们不愿意再去深入了解它。1 小时 SQL 极速入门(一)1 小时 SQL 极速入门(二)1 ...
阅读 1355·2023-01-11 13:20
阅读 1705·2023-01-11 13:20
阅读 1214·2023-01-11 13:20
阅读 1906·2023-01-11 13:20
阅读 4164·2023-01-11 13:20
阅读 2753·2023-01-11 13:20
阅读 1398·2023-01-11 13:20
阅读 3668·2023-01-11 13:20