Kubeadm 是一个工具,它提供了 kubeadm init 以及 kubeadm join 这两个命令作为快速创建 kubernetes 集群的最佳实践。
kubeadm 通过执行必要的操作来启动和运行一个最小可用的集群。kubeadm 只关心启动集群,而不关心其他工作,如部署前的节点准备工作、安装各种Kubernetes Dashboard、监控解决方案以及特定云提供商的插件,这些都不属于 kubeadm 关注范围。
kubeadm 主要有如下功能:
本方案使用UCloud云主机,在云主机之上自建Kubernetes。
同时使用kubeadm部署工具,实现高可用,同时提供相关Kubernetes周边组件。本方案可直接应用于生产环境。
其他主要部署组件包括:
提示:本方案部署所使用脚本均由本人提供,可能不定期更新。
节点主机名 | IP | 类型 | 运行服务 |
---|---|---|---|
master01 | 172.24.8.141 | Kubernetes master节点 | KeepAlived、HAProxy、containerd、etcd、kube-apiserver、kube-scheduler、kube-controller-manager、kubectl、kubelet、metrics、calico、rook-osd |
master02 | 172.24.8.142 | Kubernetes master节点 | KeepAlived、HAProxy、containerd、etcd、kube-apiserver、kube-scheduler、kube-controller-manager、kubectl、kubelet、metrics、calico、rook-osd |
master03 | 172.24.8.143 | Kubernetes master节点 | KeepAlived、HAProxy、containerd、etcd、kube-apiserver、kube-scheduler、kube-controller-manager、kubectl、kubelet、metrics、calico、rook-osd |
worker01 | 172.24.8.144 | Kubernetes worker节点 | containerd、kubelet、proxy、calico、rook-osd、ingress |
worker02 | 172.24.8.145 | Kubernetes worker节点 | containerd、kubelet、proxy、calico、rook-osd、ingress |
worker03 | 172.24.8.146 | Kubernetes worker节点 | containerd、kubelet、proxy、calico、rook-osd、ingress |
worker04 | 172.24.8.147 | Kubernetes worker节点 | containerd、kubelet、proxy、calico、rook-osd、ingress |
Kubernetes的高可用主要指的是控制平面的高可用,即指多套Master节点组件和Etcd组件,工作节点通过负载均衡连接到各Master。
Kubernetes高可用架构中etcd与Master节点组件混布方式特点:
提示:本实验使用Keepalived+HAProxy架构实现Kubernetes的高可用。
建议对所有节点主机名进行相应配置。
[root@master01 ~]# hostnamectl set-hostname master01 #其他节点依次修改
[root@master01 ~]# cat >> /etc/hosts << EOF
172.24.8.141 master01
172.24.8.142 master02
172.24.8.143 master03
172.24.8.144 worker01
172.24.8.145 worker02
172.24.8.146 worker03
EOF
为实现自动化部署,便于管理和维护,建议做如下变量准备。
[root@master01 ~]# wget http://down.linuxsb.com/mydeploy/k8s/v1.21.0/environment.sh
[root@master01 ~]# vi environment.sh #确认相关主机名和IP
#!/bin/sh
#****************************************************************#
# scriptName: environment.sh
# Author: xhy
# Create Date: 2020-05-30 16:30
# Modify Author: xhy
# Modify Date: 2020-05-30 16:30
# Version:
#***************************************************************#
# 集群 MASTER 机器 IP 数组
export MASTER_IPS=(172.24.8.141 172.24.8.142 172.24.8.143)
# 集群 MASTER IP 对应的主机名数组
export MASTER_NAMES=(master01 master02 master03)
# 集群 NODE 机器 IP 数组
export NODE_IPS=(172.24.8.144 172.24.8.145 172.24.8.146)
# 集群 NODE IP 对应的主机名数组
export NODE_NAMES=(worker01 worker02 worker03)
# 集群所有机器 IP 数组
export ALL_IPS=(172.24.8.141 172.24.8.142 172.24.8.143 172.24.8.144 172.24.8.145 172.24.8.146)
# 集群所有IP 对应的主机名数组
export ALL_NAMES=(master01 master02 master03 worker01 worker02 worker03)
为了方便远程分发文件和执行命令,本实验配置master01节点到其它节点的 ssh 信任关系,即免秘钥管理所有其他节点。
[root@master01 ~]# ssh-keygen -f ~/.ssh/id_rsa -N
[root@master01 ~]# for all_ip in ${ALL_IPS[@]}
do
echo ">>> ${all_ip}"
ssh-copy-id -i ~/.ssh/id_rsa.pub root@${all_ip}
done
提示:此操作仅需要在master01节点操作。
kubeadm本身不负责对环境的准别,环境的初始化准备本方案使用脚本自动完成。
使用如下脚本对基础环境进行初始化,主要包括:
[root@master01 ~]# wget http://down.linuxsb.com/mydeploy/k8s/v1.21.0/k8sconinit.sh
[root@master01 ~]# vim k8sconinit.sh
#!/bin/sh
#****************************************************************#
# scriptName: k8sinit.sh
# Author: xhy
# Create Date: 2020-05-30 16:30
# Modify Author: xhy
# Modify Date: 2021-04-16 07:35
# Version:
#***************************************************************#
# Initialize the machine. This needs to be executed on every machine.
rm -f /var/lib/rpm/__db.00*
rpm -vv --rebuilddb
yum clean all
yum makecache
sleep 3s
# Install containerd
CONVERSION=1.4.4 #确认containerd版本,其他保持默认
……
提示:此操作仅需要在master01节点操作。
[root@master01 ~]# source environment.sh
[root@master01 ~]# chmod +x *.sh
[root@master01 ~]# for all_ip in ${ALL_IPS[@]}
do
echo ">>> ${all_ip}"
scp -rp /etc/hosts root@${all_ip}:/etc/hosts
scp -rp k8sconinit.sh root@${all_ip}:/root/
ssh root@${all_ip} "bash /root/k8sconinit.sh"
done
HAProxy是可提供高可用性、负载均衡以及基于TCP(从而可以反向代理kubeapiserver等应用)和HTTP应用的代理,支持虚拟主机,它是免费、快速并且可靠的一种高可用解决方案。
[root@master01 ~]# for master_ip in ${MASTER_IPS[@]}
do
echo ">>> ${master_ip}"
ssh root@${master_ip} "yum -y install gcc gcc-c++ make libnl3 libnl3-devel libnfnetlink openssl-devel wget openssh-clients systemd-devel zlib-devel pcre-devel"
ssh root@${master_ip} "wget http://down.linuxsb.com/software/haproxy-2.3.9.tar.gz"
ssh root@${master_ip} "tar -zxvf haproxy-2.3.9.tar.gz"
ssh root@${master_ip} "cd haproxy-2.3.9/ && make ARCH=x86_64 TARGET=linux-glibc USE_PCRE=1 USE_ZLIB=1 USE_SYSTEMD=1 PREFIX=/usr/local/haprpxy && make install PREFIX=/usr/local/haproxy"
ssh root@${master_ip} "cp /usr/local/haproxy/sbin/haproxy /usr/sbin/"
ssh root@${master_ip} "useradd -r haproxy && usermod -G haproxy haproxy"
ssh root@${master_ip} "mkdir -p /etc/haproxy && cp -r /root/haproxy-2.3.9/examples/errorfiles/ /usr/local/haproxy/"
done
KeepAlived 是一个基于VRRP协议来实现的LVS服务高可用方案,可以解决静态路由出现的单点故障问题。本方案3台master节点运行Keepalived,一台为主服务器(MASTER),另外两台为备份服务器(BACKUP)。
对集群外表现为一个虚拟IP,主服务器会发送特定的消息给备份服务器,当备份服务器收不到这个消息的时候,即主服务器宕机的时候,备份服务器就会接管虚拟IP,继续提供服务,从而保证了高可用性。
[root@master01 ~]# for master_ip in ${MASTER_IPS[@]}
do
echo ">>> ${master_ip}"
ssh root@${master_ip} "yum -y install curl gcc gcc-c++ make libnl3 libnl3-devel libnfnetlink openssl-devel"
ssh root@${master_ip} "wget http://down.linuxsb.com/software/keepalived-2.2.2.tar.gz"
ssh root@${master_ip} "tar -zxvf keepalived-2.2.2.tar.gz"
ssh root@${master_ip} "cd keepalived-2.2.2/ && LDFLAGS="$LDFAGS -L /usr/local/openssl/lib/" ./configure --sysconf=/etc --prefix=/usr/local/keepalived && make && make install"
ssh root@${master_ip} "systemctl enable keepalived --now && systemctl restart keepalived"
done
提示:如上仅需Master01节点操作,从而实现所有节点自动化安装。若出现如下报错:undefined reference to `OPENSSL_init_ssl’,可带上openssl lib路径:
LDFLAGS="$LDFAGS -L /usr/local/openssl/lib/" ./configure --sysconf=/etc --prefix=/usr/local/keepalived
对集群相关的组件提前配置,可使用如下脚本定义。
[root@master01 ~]# wget http://down.linuxsb.com/mydeploy/k8s/v1.21.0/k8sconfig.sh #拉取自动部署脚本
[root@master01 ~]# vi k8sconfig.sh
#!/bin/sh
#****************************************************************#
# scriptName: k8sconfig
# Author: xhy
# Create Date: 2020-06-08 20:00
# Modify Author: xhy
# Modify Date: 2021-04-16 23:16
# Version: v3
#***************************************************************#
# set variables below to create the config files all files will create at ./kubeadm directory
# master keepalived virtual ip address
export K8SHA_VIP=172.24.8.100
# master01 ip address
export K8SHA_IP1=172.24.8.141
# master02 ip address
export K8SHA_IP2=172.24.8.142
# master03 ip address
export K8SHA_IP3=172.24.8.143
# master01 hostname
export K8SHA_HOST1=master01
# master02 hostname
export K8SHA_HOST2=master02
# master03 hostname
export K8SHA_HOST3=master03
# master01 network interface name
export K8SHA_NETINF1=eth0
# master02 network interface name
export K8SHA_NETINF2=eth0
# master03 network interface name
export K8SHA_NETINF3=eth0
# keepalived auth_pass config
export K8SHA_KEEPALIVED_AUTH=412f7dc3bfed32194d1600c483e10ad1d
# kubernetes CIDR pod subnet
export K8SHA_PODCIDR=10.10.0.0
# kubernetes CIDR svc subnet
export K8SHA_SVCCIDR=10.20.0.0
[root@master01 ~]# bash k8sconfig.sh
解释:如上仅需Master01节点操作。执行k8sconfig.sh脚本后会生产如下配置文件清单:
[root@master01 ~]# vim kubeadm/kubeadm-config.yaml #检查集群初始化配置
apiVersion: kubeadm.k8s.io/v1beta2
kind: ClusterConfiguration
networking:
serviceSubnet: "10.20.0.0/16" #设置svc网段
podSubnet: "10.10.0.0/16" #设置Pod网段
dnsDomain: "cluster.local"
kubernetesVersion: "v1.21.0" #设置安装版本
controlPlaneEndpoint: "172.24.8.100:16443" #设置相关API VIP地址
apiServer:
certSANs:
- master01
- master02
- master03
- 127.0.0.1
- 172.24.8.141
- 172.24.8.142
- 172.24.8.143
- 172.24.8.100
timeoutForControlPlane: 4m0s
certificatesDir: "/etc/kubernetes/pki"
imageRepository: "k8s.gcr.io"
---
apiVersion: kubeproxy.config.k8s.io/v1alpha1
kind: KubeProxyConfiguration
mode: ipvs
提示:如上仅需Master01节点操作,更多config文件参考:https://pkg.go.dev/k8s.io/kubernetes@v1.21.0/cmd/kubeadm/app/apis/kubeadm/v1beta2。
此kubeadm部署初始化配置更多参考:https://pkg.go.dev/k8s.io/kubernetes@v1.21.0/cmd/kubeadm/app/apis/kubeadm/v1beta2。
默认kubeadm配置可使用kubeadm config print init-defaults > config.yaml生成。
提前启动KeepAlive和HAProxy,提前准备好高可用环境。
[root@master01 ~]# cat /etc/keepalived/keepalived.conf
[root@master01 ~]# cat /etc/keepalived/check_apiserver.sh #确认Keepalived配置
[root@master01 ~]# for master_ip in ${MASTER_IPS[@]}
do
echo ">>> ${master_ip}"
ssh root@${master_ip} "systemctl enable haproxy.service --now && systemctl restart haproxy.service"
ssh root@${master_ip} "systemctl enable keepalived.service --now && systemctl restart keepalived.service"
ssh root@${master_ip} "systemctl status keepalived.service | grep Active"
ssh root@${master_ip} "systemctl status haproxy.service | grep Active"
done
[root@master01 ~]# for all_ip in ${ALL_IPS[@]}
do
echo ">>> ${all_ip}"
ssh root@${all_ip} "ping -c1 172.24.8.100"
done #等待10s执行检查
提示:如上仅需Master01节点操作,从而实现所有节点自动启动服务。
需要在每台机器上都安装以下的软件包:
kubeadm不能安装或管理 kubelet 或 kubectl ,所以得保证他们满足通过 kubeadm 安装的 Kubernetes控制层对版本的要求。如果版本没有满足要求,可能导致一些意外错误或问题。
具体相关组件安装见;附001.kubectl介绍及使用书提示:Kubernetes 1.21.0版本所有兼容相应组件的版本参考:https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.21.md。
[root@master01 ~]# for all_ip in ${ALL_IPS[@]}
do
echo ">>> ${all_ip}"
ssh root@${all_ip} "cat < /etc/yum.repos.d/kubernetes.repo
[kubernetes]
name=Kubernetes
baseurl=https://mirrors.aliyun.com/kubernetes/yum/repos/kubernetes-el7-x86_64/
enabled=1
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://mirrors.aliyun.com/kubernetes/yum/doc/yum-key.gpg https://mirrors.aliyun.com/kubernetes/yum/doc/rpm-package-key.gpg
EOF"
ssh root@${all_ip} "yum install -y kubeadm-1.21.0-0.x86_64 kubelet-1.21.0-0.x86_64 kubectl-1.21.0-0.x86_64 --disableexcludes=kubernetes"
ssh root@${all_ip} "systemctl enable kubelet"
done
[root@master01 ~]# yum search -y kubelet --showduplicates #查看相应版本
提示:如上仅需Master01节点操作,从而实现所有节点自动化安装,同时此时不需要启动kubelet,初始化的过程中会自动启动的,如果此时启动了会出现报错,忽略即可。说明:同时安装了cri-tools kubernetes-cni socat三个依赖:
socat:kubelet的依赖;
cri-tools:即CRI(Container Runtime Interface)容器运行时接口的命令行工具。
初始化过程中会pull大量镜像,并且镜像位于国外,可能出现无法pull的情况导致Kubernetes初始化失败。建议提前准备镜像,保证后续初始化。
[root@master01 ~]# kubeadm --kubernetes-version=v1.21.0 config images list #列出所需镜像
[root@master01 ~]# cat < kubeadm/conloadimage.sh
#!/bin/sh
#****************************************************************#
# scriptName: conloadimage.sh
# Author: xhy
# Create Date: 2021-04-15 14:03
# Modify Author: xhy
# Modify Date: 2021-04-15 17:35
# Version:
#***************************************************************#
KUBE_VERSION=v1.21.0
CALICO_VERSION=v3.18.1
CALICO_URL=docker.io/calico
KUBE_PAUSE_VERSION=3.4.1
ETCD_VERSION=3.4.13-0
CORE_DNS_VERSION=v1.8.0
GCR_URL=k8s.gcr.io
METRICS_SERVER_VERSION=v0.4.2
INGRESS_VERSION=v0.45.0
CSI_PROVISIONER_VERSION=v1.6.0-lh1
CSI_NODE_DRIVER_VERSION=v1.2.0-lh1
CSI_ATTACHER_VERSION=v2.2.1-lh1
CSI_RESIZER_VERSION=v0.5.1-lh1
DEFAULTBACKENDVERSION=1.5
ALIYUN_URL=registry.cn-hangzhou.aliyuncs.com/google_containers
UCLOUD_URL=uhub.service.ucloud.cn/uxhy
QUAY_URL=quay.io
mkdir -p conimages/
# config node hostname
export ALL_NAMES=(master02 master03 worker01 worker02 worker03)
kubeimages=(kube-proxy:${KUBE_VERSION}
kube-scheduler:${KUBE_VERSION}
kube-controller-manager:${KUBE_VERSION}
kube-apiserver:${KUBE_VERSION}
pause:${KUBE_PAUSE_VERSION}
etcd:${ETCD_VERSION}
)
corednsimages=(coredns:${CORE_DNS_VERSION}
)
for corednsimageName in ${corednsimages[@]} ; do
echo ${corednsimageName}
ctr -n k8s.io images pull ${UCLOUD_URL}/${corednsimageName}
ctr -n k8s.io images tag ${UCLOUD_URL}/${corednsimageName} ${GCR_URL}/coredns/${corednsimageName}
ctr -n k8s.io images rm ${UCLOUD_URL}/${corednsimageName}
ctr -n k8s.io images export conimages/${corednsimageName}.tar ${GCR_URL}/coredns/${corednsimageName}
done
for kubeimageName in ${kubeimages[@]} ; do
echo ${kubeimageName}
ctr -n k8s.io images pull ${UCLOUD_URL}/${kubeimageName}
ctr -n k8s.io images tag ${UCLOUD_URL}/${kubeimageName} ${GCR_URL}/${kubeimageName}
ctr -n k8s.io images rm ${UCLOUD_URL}/${kubeimageName}
ctr -n k8s.io images export conimages/${kubeimageName}.tar ${GCR_URL}/${kubeimageName}
done
metricsimages=(metrics-server:${METRICS_SERVER_VERSION})
for metricsimageName in ${metricsimages[@]} ; do
echo ${metricsimageName}
ctr -n k8s.io images pull ${UCLOUD_URL}/${metricsimageName}
ctr -n k8s.io images tag ${UCLOUD_URL}/${metricsimageName} ${GCR_URL}/metrics-server/${metricsimageName}
ctr -n k8s.io images rm ${UCLOUD_URL}/${metricsimageName}
ctr -n k8s.io images export conimages/${metricsimageName}.tar ${GCR_URL}/metrics-server/${metricsimageName}
done
calimages=(cni:${CALICO_VERSION}
pod2daemon-flexvol:${CALICO_VERSION}
node:${CALICO_VERSION}
kube-controllers:${CALICO_VERSION})
for calimageName in ${calimages[@]} ; do
echo ${calimageName}
ctr -n k8s.io images pull ${UCLOUD_URL}/${calimageName}
ctr -n k8s.io images tag ${UCLOUD_URL}/${calimageName} ${CALICO_URL}/${calimageName}
ctr -n k8s.io images rm ${UCLOUD_URL}/${calimageName}
ctr -n k8s.io images export conimages/${calimageName}.tar ${CALICO_URL}/${calimageName}
done
ingressimages=(controller:${INGRESS_VERSION})
for ingressimageName in ${ingressimages[@]} ; do
echo ${ingressimageName}
ctr -n k8s.io images pull ${UCLOUD_URL}/${ingressimageName}
ctr -n k8s.io images tag ${UCLOUD_URL}/${ingressimageName} ${GCR_URL}/ingress-nginx/${ingressimageName}
ctr -n k8s.io images rm ${UCLOUD_URL}/${ingressimageName}
ctr -n k8s.io images export conimages/${ingressimageName}.tar ${GCR_URL}/ingress-nginx/${ingressimageName}
done
csiimages=(csi-provisioner:${CSI_PROVISIONER_VERSION}
csi-node-driver-registrar:${CSI_NODE_DRIVER_VERSION}
csi-attacher:${CSI_ATTACHER_VERSION}
csi-resizer:${CSI_RESIZER_VERSION}
)
for csiimageName in ${csiimages[@]} ; do
echo ${csiimageName}
ctr -n k8s.io images pull ${UCLOUD_URL}/${csiimageName}
ctr -n k8s.io images tag ${UCLOUD_URL}/${csiimageName} longhornio/${csiimageName}
ctr -n k8s.io images rm ${UCLOUD_URL}/${csiimageName}
ctr -n k8s.io images export conimages/${csiimageName}.tar longhornio/${csiimageName}
done
otherimages=(defaultbackend-amd64:${DEFAULTBACKENDVERSION})
for otherimagesName in ${otherimages[@]} ; do
echo ${otherimagesName}
ctr -n k8s.io images pull ${UCLOUD_URL}/${otherimagesName}
ctr -n k8s.io images tag ${UCLOUD_URL}/${otherimagesName} ${GCR_URL}/${otherimagesName}
ctr -n k8s.io images rm ${UCLOUD_URL}/${otherimagesName}
ctr -n k8s.io images export conimages/${otherimagesName}.tar ${GCR_URL}/${otherimagesName}
done
allimages=(kube-proxy:${KUBE_VERSION}
kube-scheduler:${KUBE_VERSION}
kube-controller-manager:${KUBE_VERSION}
kube-apiserver:${KUBE_VERSION}
pause:${KUBE_PAUSE_VERSION}
etcd:${ETCD_VERSION}
coredns:${CORE_DNS_VERSION}
metrics-server:${METRICS_SERVER_VERSION}
cni:${CALICO_VERSION}
pod2daemon-flexvol:${CALICO_VERSION}
node:${CALICO_VERSION}
kube-controllers:${CALICO_VERSION}
controller:${INGRESS_VERSION}
csi-provisioner:${CSI_PROVISIONER_VERSION}
csi-node-driver-registrar:${CSI_NODE_DRIVER_VERSION}
csi-attacher:${CSI_ATTACHER_VERSION}
csi-resizer:${CSI_RESIZER_VERSION}
defaultbackend-amd64:${DEFAULTBACKENDVERSION}
)
for all_name in ${ALL_NAMES[@]}
do
echo ">>> ${all_name}"
ssh root@${all_name} "mkdir /root/conimages"
scp -rp conimages/* root@${all_name}:/root/conimages/
done
for allimageName in ${allimages[@]}
do
for all_name in ${ALL_NAMES[@]}
do
echo "${allimageName} copy to ${all_name}"
ssh root@${all_name} "ctr -n k8s.io images import conimages/${allimageName}.tar"
done
done
EOF
#确认版本,提前下载镜像
[root@master01 ~]# bash kubeadm/conloadimage.sh
提示:如上仅需Master01节点操作,从而实现所有节点镜像的分发。
注意相关版本,如上脚本为v1.21.0 Kubernetes版本所需镜像。
[root@master01 ~]# ctr -n k8s.io images ls #确认验证
[root@master01 ~]# crictl images ls
[root@master01 ~]# kubeadm init --config=kubeadm/kubeadm-config.yaml --upload-certs #保留如下命令用于后续节点添加:
You can now join any number of the control-plane node running the following command on each as root:
kubeadm join 172.24.8.100:16443 --token 6h8ncy.g0lzrgiav8ct7kyo
--discovery-token-ca-cert-hash sha256:41c1966aa5aaf6108b938daf3bdcf103991be5fd8141854f800a4bbc3df7979a
--control-plane --certificate-key f32602ab63d2545b8cab5d392d0e53942872fac8cfc23c8ae1ee545f4e365394
Please note that the certificate-key gives access to cluster sensitive data keep it secret!
As a safeguard uploaded-certs will be deleted in two hours; If necessary you can use
"kubeadm init phase upload-certs --upload-certs" to reload certs afterward.
Then you can join any number of worker nodes by running the following on each as root:
kubeadm join 172.24.8.100:16443 --token 6h8ncy.g0lzrgiav8ct7kyo
--discovery-token-ca-cert-hash sha256:41c1966aa5aaf6108b938daf3bdcf103991be5fd8141854f800a4bbc3df7979a
注意:如上token具有默认24小时的有效期,token和hash值可通过如下方式获取:
kubeadm token list
如果 Token 过期以后,可以输入以下命令,生成新的 Token:
kubeadm token create
openssl x509 -pubkey -in /etc/kubernetes/pki/ca.crt | openssl rsa -pubin -outform der 2>/dev/null | openssl dgst -sha256 -hex | sed s/^.* //
[root@master01 ~]# mkdir -p $HOME/.kube
[root@master01 ~]# sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
[root@master01 ~]# sudo chown $(id -u):$(id -g) $HOME/.kube/config
[root@master01 ~]# cat << EOF >> ~/.bashrc
export KUBECONFIG=$HOME/.kube/config
EOF #设置KUBECONFIG环境变量
[root@master01 ~]# echo "source <(kubectl completion bash)" >> ~/.bashrc
[root@master01 ~]# source ~/.bashrc
附加:初始化过程大致步骤如下:
提示:初始化仅需要在master01上执行,若初始化异常可通过kubeadm reset && rm -rf $HOME/.kube
重置。
[root@master02 ~]# kubeadm join 172.24.8.100:16443 --token 6h8ncy.g0lzrgiav8ct7kyo
--discovery-token-ca-cert-hash sha256:41c1966aa5aaf6108b938daf3bdcf103991be5fd8141854f800a4bbc3df7979a
--control-plane --certificate-key f32602ab63d2545b8cab5d392d0e53942872fac8cfc23c8ae1ee545f4e365394
[root@master02 ~]# mkdir -p $HOME/.kube
[root@master02 ~]# sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
[root@master02 ~]# sudo chown $(id -u):$(id -g) $HOME/.kube/config
[root@master02 ~]# cat << EOF >> ~/.bashrc
export KUBECONFIG=$HOME/.kube/config
EOF #设置KUBECONFIG环境变量
[root@master02 ~]# echo "source <(kubectl completion bash)" >> ~/.bashrc
[root@master02 ~]# source ~/.bashrc
提示:master03也如上执行添加至集群的controlplane。
若添加异常可通过kubeadm reset && rm -rf $HOME/.kube
重置。
+Romana 是一个 pod 网络的层 3 解决方案,并且支持 NetworkPolicy API。Kubeadm add-on 安装细节可以在这里找到。
提示:本方案使用Calico插件。
确认相关配置,如MTU,网卡接口,Pod的IP地址段。
[root@master01 ~]# cat kubeadm/calico/calico.yaml | grep -A1 -E CALICO_IPV4POOL_CIDR|IP_AUTODETECTION_METHOD|veth_mtu: #检查配置
……
veth_mtu: "1400" #calico建议为主机MTU减去50UCloud主机默认网卡为1454,建议calico mtu设置为1400
--
- name: IP_AUTODETECTION_METHOD
value: "interface=eth.*" #检查节点之间的网卡
--
- name: CALICO_IPV4POOL_CIDR
value: "10.10.0.0/16" #检查Pod网段
……
[root@master01 ~]# kubectl apply -f kubeadm/calico/calico.yaml
[root@master01 ~]# kubectl get pods --all-namespaces -o wide #查看部署
[root@master01 ~]# kubectl get nodes
提示:官方calico参考:https://docs.projectcalico.org/manifests/calico.yaml。
默认Kubernetes的端口范围为30000-32767,为便于后期应用,如ingress的80、443端口,建议开放全端口。同时开放全端口范围后,需要注意避开公共端口,如8080。
[root@master01 ~]# vi /etc/kubernetes/manifests/kube-apiserver.yaml
……
- --service-node-port-range=1-65535
……
提示:如上需要在所有Master节点操作。
kube-scheduler和kube-controller-manager的健康检查使用非安全端口,因此建议打开。
root@master01:~# vi /etc/kubernetes/manifests/kube-scheduler.yaml
……
# - --port=0 #删掉或注释关闭非安全端口的配置,从而打开非安全端口
……
root@master01:~# vi /etc/kubernetes/manifests/kube-controller-manager.yaml
……
# - --port=0 #删掉或注释关闭非安全端口的配置,从而打开非安全端口
……
提示:如上需在所有Master节点操作。
[root@master01 ~]# source environment.sh
[root@master01 ~]# for node_ip in ${NODE_IPS[@]}
do
echo ">>> ${node_ip}"
ssh root@${node_ip} "kubeadm join 172.24.8.100:16443 --token 6h8ncy.g0lzrgiav8ct7kyo
--discovery-token-ca-cert-hash sha256:41c1966aa5aaf6108b938daf3bdcf103991be5fd8141854f800a4bbc3df7979a"
ssh root@${node_ip} "systemctl enable kubelet.service"
done
提示:如上仅需Master01节点操作,从而实现所有Worker节点添加至集群,若添加异常可通过如下方式重置:
[root@worker01 ~]# kubeadm reset
[root@worker01 ~]# ifconfig cni0 down
[root@worker01 ~]# ip link delete cni0
[root@worker01 ~]# ifconfig flannel.1 down
[root@worker01 ~]# ip link delete flannel.1
[root@worker01 ~]# rm -rf /var/lib/cni/
[root@master01 ~]# kubectl get nodes #节点状态
[root@master01 ~]# kubectl get cs #组件状态
[root@master01 ~]# kubectl get serviceaccount #服务账户
[root@master01 ~]# kubectl cluster-info #集群信息
[root@master01 ~]# kubectl get pod -n kube-system -o wide #所有服务状态
提示:更多Kubetcl使用参考:https://kubernetes.io/docs/reference/kubectl/kubectl/
https://kubernetes.io/docs/reference/kubectl/overview/
更多kubeadm使用参考:https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/
Kubernetes的早期版本依靠Heapster来实现完整的性能数据采集和监控功能,Kubernetes从1.8版本开始,性能数据开始以Metrics API的方式提供标准化接口,并且从1.10版本开始将Heapster替换为Metrics Server。在Kubernetes新的监控体系中,Metrics Server用于提供核心指标(Core Metrics),包括Node、Pod的CPU和内存使用指标。
对其他自定义指标(Custom Metrics)的监控则由Prometheus等组件来完成。
有关聚合层知识参考:https://blog.csdn.net/liukuan73/article/details/81352637
kubeadm方式部署默认已开启。
[root@master01 ~]# mkdir metrics
[root@master01 ~]# cd metrics/
[root@master01 metrics]# wget https://github.com/kubernetes-sigs/metrics-server/releases/latest/download/components.yaml
[root@master01 metrics]# vi components.yaml
……
apiVersion: apps/v1
kind: Deployment
……
spec:
replicas: 3 #根据集群规模调整副本数
……
spec:
hostNetwork: true
containers:
- args:
- --cert-dir=/tmp
- --secure-port=4443
- --kubelet-insecure-tls #追加此args
- --kubelet-preferred-address-types=InternalIPExternalIPHostnameInternalDNSExternalDNS #追加此args
- --kubelet-use-node-status-port
image: k8s.gcr.io/metrics-server/metrics-server:v0.4.2
imagePullPolicy: IfNotPresent
……
[root@master01 metrics]# kubectl apply -f components.yaml
[root@master01 metrics]# kubectl -n kube-system get pods -l k8s-app=metrics-server
NAME READY STATUS RESTARTS AGE
metrics-server-7bc5984686-px9lr 1/1 Running 0 66s
metrics-server-7bc5984686-qffb2 1/1 Running 0 66s
metrics-server-7bc5984686-t89z5 1/1 Running 0 66s
[root@master01 ~]# kubectl top nodes
[root@master01 ~]# kubectl top pods --all-namespaces
提示:Metrics Server提供的数据也可以供HPA控制器使用,以实现基于CPU使用率或内存使用值的Pod自动扩缩容功能。
部署参考:https://linux48.com/container/2019-11-13-metrics-server.html
有关metrics更多部署参考:
https://kubernetes.io/docs/tasks/debug-application-cluster/resource-metrics-pipeline/
开启开启API Aggregation参考:
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/apiserver-aggregation/
API Aggregation介绍参考:
https://kubernetes.io/docs/tasks/access-kubernetes-api/configure-aggregation-layer/
通常Service的表现形式为IP:Port,即工作在TCP/IP层。
对于基于HTTP的服务来说,不同的URL地址经常对应到不同的后端服务(RS)或者虚拟服务器(Virtual Host),这些应用层的转发机制仅通过Kubernetes的Service机制是无法实现的。
从Kubernetes 1.1版本开始新增Ingress资源对象,用于将不同URL的访问请求转发到后端不同的Service,以实现HTTP层的业务路由机制。
Kubernetes使用了一个Ingress策略定义和一个具体的Ingress Controller,两者结合并实现了一个完整的Ingress负载均衡器。使用Ingress进行负载分发时,Ingress Controller基于Ingress规则将客户端请求直接转发到Service对应的后端Endpoint(Pod)上,从而跳过kube-proxy的转发功能,kube-proxy不再起作用。
简单的理解就是:ingress使用DaemonSet或Deployment在相应Node上监听80,然后配合相应规则,因为Nginx外面绑定了宿主机80端口(就像 NodePort),本身又在集群内,那么向后直接转发到相应ServiceIP即可实现相应需求。ingress controller + ingress 规则 ----> services。
同时当Ingress Controller提供的是对外服务,则实际上实现的是边缘路由器的功能。
典型的HTTP层路由的架构:
[root@master01 ~]# kubectl label nodes master0{123} ingress=enable
提示:建议对于非上次业务相关的应用(如Ingress),部署在master节点,也能复用master节点的高可用。
[root@master01 ~]# mkdir ingress
[root@master01 ~]# cd ingress/
[root@master01 ingress]# wget http://down.linuxsb.com/kubernetes/ingress-nginx/controller-v0.45.0/deploy/static/provider/baremetal/deploy.yaml
提示:ingress官方参考:https://github.com/kubernetes/ingress-nginx
https://kubernetes.github.io/ingress-nginx/deploy/
为方便后续管理和排障,对相关Nginx ingress挂载时区,以便于使用主机时间。
同时对ingress做了简单配置,如日志格式等。
[root@master01 ingress]# vi deploy.yaml
……
apiVersion: apps/v1
kind: Deployment
#kind: DaemonSet
……
spec:
replicas: 3
……
image: k8s.gcr.io/ingress-nginx/controller:v0.45.0
……
volumeMounts:
……
- name: timeconfig
mountPath: /etc/localtime
readOnly: true
……
volumes:
……
- name: timeconfig
hostPath:
path: /etc/localtime
nodeSelector:
ingress: enable
tolerations:
- key: node-role.kubernetes.io/master
effect: NoSchedule
……
apiVersion: v1
kind: ConfigMap
metadata:
……
data:
# 客户端请求头的缓冲区大小
client-header-buffer-size: "512k"
# 设置用于读取大型客户端请求标头的最大值number和size缓冲区
large-client-header-buffers: "4 512k"
# 读取客户端请求body的缓冲区大小
client-body-buffer-size: "128k"
# 代理缓冲区大小
proxy-buffer-size: "256k"
# 代理body大小
proxy-body-size: "50m"
# 服务器名称哈希大小
server-name-hash-bucket-size: "128"
# map哈希大小
map-hash-bucket-size: "128"
# SSL加密套件
ssl-ciphers: "ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES256-GCM-SHA384:DHE-RSA-AES128-GCM-SHA256:DHE-DSS-AES128-GCM-SHA256:kEDH+AESGCM:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA:ECDHE-ECDSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-DSS-AES128-SHA256:DHE-RSA-AES256-SHA256:DHE-DSS-AES256-SHA:DHE-RSA-AES256-SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128-SHA256:AES256-SHA256:AES128-SHA:AES256-SHA:AES:CAMELLIA:DES-CBC3-SHA:!aNULL:!eNULL:!EXPORT:!DES:!RC4:!MD5:!PSK:!aECDH:!EDH-DSS-DES-CBC3-SHA:!EDH-RSA-DES-CBC3-SHA:!KRB5-DES-CBC3-SHA"
# ssl 协议
ssl-protocols: "TLSv1 TLSv1.1 TLSv1.2"
# 日志格式
log-format-upstream: {"time": "$time_iso8601" "remote_addr": "$proxy_protocol_addr" "x-forward-for": "$proxy_add_x_forwarded_for" "request_id": "$req_id""remote_user": "$remote_user" "bytes_sent": $bytes_sent "request_time": $request_time "status":$status "vhost": "$host" "request_proto": "$server_protocol" "path": "$uri" "request_query": "$args" "request_length": $request_length "duration": $request_time"method": "$request_method" "http_referrer": "$http_referer" "http_user_agent": "$http_user_agent" }
……
apiVersion: v1
kind: Service
……
name: ingress-nginx-controller
……
spec:
type: NodePort
externalTrafficPolicy: Local #追加
ports:
- name: http
port: 80
protocol: TCP
targetPort: http
nodePort: 80
- name: https
port: 443
protocol: TCP
targetPort: https
nodePort: 443
……
[root@master01 ingress]# kubectl apply -f deploy.yaml
提示:添加默认backend需要等待default-backend创建完成controllers才能成功部署,新版本ingress不再推荐添加default backend。
[root@master01 ingress]# kubectl get pods -n ingress-nginx -o wide
[root@master01 ingress]# kubectl get svc -n ingress-nginx -o wide
提示:参考文档:https://github.com/kubernetes/ingress-nginx/blob/master/docs/deploy/index.md。
dashboard是基于Web的Kubernetes用户界面。可以使用dashboard将容器化应用程序部署到Kubernetes集群,对容器化应用程序进行故障排除,以及管理集群资源。可以使用dashboard来概述群集上运行的应用程序,以及创建或修改单个Kubernetes资源(例如部署、任务、守护进程等)。
可以使用部署向导扩展部署,启动滚动更新,重新启动Pod或部署新应用程序。
dashboard还提供有关群集中Kubernetes资源状态以及可能发生的任何错误的信息。
[root@master01 ~]# kubectl label nodes master0{123} dashboard=enable
提示:建议对于Kubernetes自身相关的应用(如dashboard),此类非业务应用部署在master节点。
本实验已获取免费一年的证书,免费证书获取可参考:https://freessl.cn。
[root@master01 ~]# mkdir -p /root/dashboard/certs
[root@master01 ~]# cd /root/dashboard/certs
[root@master01 certs]# mv web.odocker.com.crt tls.crt
[root@master01 certs]# mv web.odocker.com.key tls.key
[root@master01 certs]# ll
total 8.0K
-rw-r--r-- 1 root root 1.9K Jun 8 11:46 tls.crt
-rw-r--r-- 1 root root 1.7K Jun 8 11:46 tls.ke
提示:也可手动如下操作创建自签证书:
[root@master01 ~]# openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout tls.key -out tls.crt -subj "/C=CN/ST=ZheJiang/L=HangZhou/O=Xianghy/OU=Xianghy/CN=web.odocker.com"
[root@master01 ~]# kubectl create ns kubernetes-dashboard #v2版本dashboard独立ns
[root@master01 ~]# kubectl create secret generic kubernetes-dashboard-certs --from-file=/root/dashboard/certs/ -n kubernetes-dashboard
[root@master01 ~]# kubectl get secret kubernetes-dashboard-certs -n kubernetes-dashboard -o yaml #查看新证书`
[root@master01 ~]# cd /root/dashboard
[root@master01 dashboard]# wget http://down.linuxsb.com/kubernetes/dashboard/v2.2.0/aio/deploy/recommended.yaml
提示:官方参考:https://github.com/kubernetes/dashboard。
[root@master01 dashboard]# vi recommended.yaml
……
kind: Service
apiVersion: v1
metadata:
labels:
k8s-app: kubernetes-dashboard
name: kubernetes-dashboard
namespace: kubernetes-dashboard
spec:
type: NodePort #新增
ports:
- port: 443
targetPort: 8443
nodePort: 30001 #新增
selector:
k8s-app: kubernetes-dashboard
---
…… #如下全部注释
#apiVersion: v1
#kind: Secret
#metadata:
# labels:
# k8s-app: kubernetes-dashboard
# name: kubernetes-dashboard-certs
# namespace: kubernetes-dashboard
#type: Opaque
……
kind: Deployment
……
replicas: 3 #适当调整为3副本
……
spec:
containers:
- name: kubernetes-dashboard
image: kubernetesui/dashboard:v2.2.0
imagePullPolicy: IfNotPresent #修改镜像下载策略
ports:
- containerPort: 8443
protocol: TCP
args:
- --auto-generate-certificates
- --namespace=kubernetes-dashboard
- --tls-key-file=tls.key
- --tls-cert-file=tls.crt
- --token-ttl=3600 #追加如上args
……
nodeSelector:
# "kubernetes.io/os": "linux"
"dashboard": enable #部署在master节点
……
kind: Service
apiVersion: v1
metadata:
labels:
k8s-app: dashboard-metrics-scraper
name: dashboard-metrics-scraper
namespace: kubernetes-dashboard
spec:
type: NodePort #新增
ports:
- port: 8000
targetPort: 8000
nodePort: 30000 #新增
selector:
k8s-app: dashboard-metrics-scraper
……
replicas: 3 #适当调整为3副本
……
nodeSelector:
# "beta.kubernetes.io/os": linux
"dashboard": enable #部署在master节点
……
[root@master01 dashboard]# kubectl apply -f recommended.yaml
[root@master01 dashboard]# kubectl get deployment kubernetes-dashboard -n kubernetes-dashboard
[root@master01 dashboard]# kubectl get services -n kubernetes-dashboard
[root@master01 dashboard]# kubectl get pods -o wide -n kubernetes-dashboard
提示:master NodePort 30001/TCP映射到 dashboard pod 443 端口。
提示:dashboard v2版本默认没有创建具有管理员权限的账户,可如下操作创建。
[root@master01 dashboard]# cat < dashboard-admin.yaml
---
apiVersion: v1
kind: ServiceAccount
metadata:
name: admin
namespace: kubernetes-dashboard
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: admin
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: cluster-admin
subjects:
- kind: ServiceAccount
name: admin
namespace: kubernetes-dashboard
EOF
[root@master01 dashboard]# kubectl apply -f dashboard-admin.yaml
[root@master01 dashboard]# kubectl -n kubernetes-dashboard create secret tls kubernetes-dashboard-tls --cert=/root/dashboard/certs/tls.crt --key=/root/dashboard/certs/tls.key
[root@master01 dashboard]# kubectl -n kubernetes-dashboard describe secrets kubernetes-dashboard-tls
[root@master01 dashboard]# cat < dashboard-ingress.yaml
---
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: kubernetes-dashboard-ingress
namespace: kubernetes-dashboard
annotations:
kubernetes.io/ingress.class: "nginx"
nginx.ingress.kubernetes.io/use-regex: "true"
nginx.ingress.kubernetes.io/ssl-passthrough: "true"
nginx.ingress.kubernetes.io/rewrite-target: /
nginx.ingress.kubernetes.io/ssl-redirect: "true"
#nginx.ingress.kubernetes.io/secure-backends: "true"
nginx.ingress.kubernetes.io/backend-protocol: "HTTPS"
nginx.ingress.kubernetes.io/proxy-connect-timeout: "600"
nginx.ingress.kubernetes.io/proxy-read-timeout: "600"
nginx.ingress.kubernetes.io/proxy-send-timeout: "600"
nginx.ingress.kubernetes.io/configuration-snippet: |
proxy_ssl_session_reuse off;
spec:
rules:
- host: web.odocker.com
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: kubernetes-dashboard
port:
number: 443
tls:
- hosts:
- web.odocker.com
secretName: kubernetes-dashboard-tls
EOF
[root@master01 dashboard]# kubectl apply -f dashboard-ingress.yaml
[root@master01 dashboard]# kubectl -n kubernetes-dashboard get ingress
使用token相对复杂,可将token添加至kubeconfig文件中,使用KubeConfig文件访问dashboard。
[root@master01 dashboard]# ADMIN_SECRET=$(kubectl -n kubernetes-dashboard get secret | grep admin | awk {print $1})
[root@master01 dashboard]# DASHBOARD_LOGIN_TOKEN=$(kubectl describe secret -n kubernetes-dashboard ${ADMIN_SECRET} | grep -E ^token | awk {print $2})
[root@master01 dashboard]# kubectl config set-cluster kubernetes
--certificate-authority=/etc/kubernetes/pki/ca.crt
--embed-certs=true
--server=172.24.8.100:16443
--kubeconfig=local-ngkeconk8s-1-21-admin.kubeconfig # 设置集群参数
[root@master01 dashboard]# kubectl config set-credentials dashboard_user
--token=${DASHBOARD_LOGIN_TOKEN}
--kubeconfig=local-ngkeconk8s-1-21-admin.kubeconfig # 设置客户端认证参数,使用上面创建的 Token
[root@master01 dashboard]# kubectl config set-context default
--cluster=kubernetes
--user=dashboard_user
--kubeconfig=local-ngkeconk8s-1-21-admin.kubeconfig # 设置上下文参数
[root@master01 dashboard]# kubectl config use-context default --kubeconfig=local-ngkeconk8s-1-21-admin.kubeconfig # 设置默认上下文
将web.odocker.com.crt证书文件导入,以便于浏览器使用该文件登录。
将web.odocker.com证书导入浏览器,并设置为信任,导入操作略。
本实验采用ingress所暴露的域名:https://web.odocker.com
方式一:token访问
可使用kubectl describe secret -n kubernetes-dashboard ${ADMIN_SECRET} | grep -E ^token | awk {print $2}
所获取的token访问。
方式二:kubeconfig访问
local-ngkeconk8s-1-21-admin.kubeconfig文件访问。
提示:
更多dashboard访问方式及认证可参考附004.Kubernetes Dashboard简介及使用。
dashboard登录整个流程可参考:https://www.cnadn.net/post/2613.html
Longhorn是用于Kubernetes的开源分布式块存储系统。
提示:更多介绍参考:https://github.com/longhorn/longhorn。
[root@master01 ~]# source environment.sh
[root@master01 ~]# for all_ip in ${ALL_IPS[@]}
do
echo ">>> ${all_ip}"
ssh root@${all_ip} "yum -y install iscsi-initiator-utils &"
done
提示:所有节点都需要安装。
[root@master01 ~]# kubectl label nodes master0{123} longhorn-ui=enabled
提示:ui图形界面可复用master高可用,因此部署在master节点。
默认longhorn使用/var/lib/longhorn/作为设备路径,因此建议提前挂载。
[root@master01 ~]# source environment.sh
[root@master01 ~]# for node_ip in ${NODE_IPS[@]}
do
echo ">>> ${node_ip}"
ssh root@${node_ip} "mkfs.xfs -f /dev/sdb &&
mkdir -p /var/lib/longhorn/ &&
echo /dev/sdb /var/lib/longhorn xfs defaults 0 0 >> /etc/fstab &&
mount -a"
done
[root@master01 ~]# mkdir longhorn
[root@master01 ~]# cd longhorn/
[root@master01 longhorn]# wget
https://raw.githubusercontent.com/longhorn/longhorn/master/deploy/longhorn.yaml
[root@master01 longhorn]# vi longhorn.yaml
……
---
apiVersion: apps/v1
kind: DaemonSet
metadata:
labels:
app: longhorn-manager
name: longhorn-manager
……
imagePullPolicy: IfNotPresent
……
---
apiVersion: apps/v1
kind: Deployment
metadata:
labels:
app: longhorn-ui
name: longhorn-ui
……
nodeSelector:
longhorn-ui: enabled #追加标签选择
tolerations:
- key: node-role.kubernetes.io/master #添加容忍
effect: NoSchedule
# imagePullSecrets:
# - name:
……
---
kind: Service
apiVersion: v1
metadata:
labels:
app: longhorn-ui
name: longhorn-frontend
namespace: longhorn-system
spec:
type: NodePort #修改为nodeport
selector:
app: longhorn-ui
ports:
- port: 80
targetPort: 8000
nodePort: 30002
---
……
[root@master01 longhorn]# kubectl apply -f longhorn.yaml
[root@master01 longhorn]# kubectl -n longhorn-system get pods -o wide
提示:若部署异常可删除重建,若出现无法删除namespace,可通过如下操作进行删除:
wget https://github.com/longhorn/longhorn/blob/master/uninstall/uninstall.yaml
rm -rf /var/lib/longhorn/
kubectl apple -f uninstall.yaml
kubectl delete -f uninstall.yaml
提示:默认longhorn部署完成已创建一个sc,也可通过如下手动编写yaml创建。
[root@master01 longhorn]# kubectl get sc
NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE ALLOWVOLUMEEXPANSION AGE
……
longhorn driver.longhorn.io Delete Immediate true 15m
[root@master01 longhorn]# cat < longhornsc.yaml
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
name: longhornsc
provisioner: rancher.io/longhorn
parameters:
numberOfReplicas: "3"
staleReplicaTimeout: "30"
fromBackup: ""
EOF
[root@master01 longhorn]# kubectl apply -f longhornsc.yaml
[root@master01 longhorn]# cat < longhornpod.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: longhorn-pvc
spec:
accessModes:
- ReadWriteOnce
storageClassName: longhorn
resources:
requests:
storage: 500Mi
---
apiVersion: v1
kind: Pod
metadata:
name: longhorn-pod
namespace: default
spec:
containers:
- name: volume-test
image: nginx:stable-alpine
imagePullPolicy: IfNotPresent
volumeMounts:
- name: volv
mountPath: /data
ports:
- containerPort: 80
volumes:
- name: volv
persistentVolumeClaim:
claimName: longhorn-pvc
EOF
[root@master01 longhorn]# kubectl apply -f longhornpod.yaml
[root@master01 longhorn]# kubectl get pods
[root@master01 longhorn]# kubectl get pvc
[root@master01 longhorn]# kubectl get pv
[root@master01 longhorn]# yum -y install httpd-tools
[root@master01 longhorn]# htpasswd -c auth xhy #创建用户名和密码
New password: [输入密码]
Re-type new password: [输入密码]
提示:也可通过如下命令创建:
USER=xhy; PASSWORD=x120952576; echo "${USER}:$(openssl passwd -stdin -apr1 <<< ${PASSWORD})" >> auth
[root@master01 longhorn]# kubectl -n longhorn-system create secret generic longhorn-basic-auth --from-file=auth
[root@master01 longhorn]# cat < longhorn-ingress.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: longhorn-ingress
namespace: longhorn-system
annotations:
nginx.ingress.kubernetes.io/auth-type: basic
nginx.ingress.kubernetes.io/auth-secret: longhorn-basic-auth
nginx.ingress.kubernetes.io/auth-realm: Authentication Required
spec:
rules:
- host: longhorn.odocker.com
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: longhorn-frontend
port:
number: 80
EOF
[root@master01 longhorn]# kubectl apply -f longhorn-ingress.yaml
[root@master01 longhorn]# kubectl -n longhorn-system get ingress
NAME CLASS HOSTS ADDRESS PORTS AGE
longhorn-ingress longhorn.odocker.com 172.24.8.144172.24.8.145172.24.8.146 80 45s
浏览器访问:longhorn.odocker.com,并输入账号和密码。
使用xhy/[密码]登录查看。
Helm 将使用 kubectl 在已配置的集群上部署 Kubernetes 资源,因此需要如下前置准备:
[root@master01 ~]# wget https://get.helm.sh/helm-v3.5.4-linux-amd64.tar.gz
[root@master01 ~]# tar -zxvf helm-v3.5.4-linux-amd64.tar.gz
[root@master01 ~]# cp linux-amd64/helm /usr/local/bin/
[root@master01 ~]# helm version #查看安装版本
[root@master01 ~]# echo source <(helm completion bash) >> $HOME/.bashrc #helm自动补全
提示:更多安装方式参考官方手册:https://helm.sh/docs/intro/install/。
helm search:可以用于搜索两种不同类型的源。
helm search hub:搜索 Helm Hub,该源包含来自许多不同仓库的Helm chart。
helm search repo:搜索已添加到本地头helm客户端(带有helm repo add)的仓库,该搜索是通过本地数据完成的,不需要连接公网。
[root@master01 ~]# helm search hub #可搜索全部可用chart
[root@master01 ~]# helm search hub wordpress
[root@master01 ~]# helm repo list #查看repo
[root@master01 ~]# helm repo add brigade https://brigadecore.github.io/charts
[root@master01 ~]# helm repo add stable https://kubernetes-charts.storage.googleapis.com/ #添加官方repo
[root@master01 ~]# helm repo add bitnami https://charts.bitnami.com/bitnami
[root@master01 ~]# helm search repo brigade
[root@master01 ~]# helm search repo stable #搜索repo中的chart
[root@master01 ~]# helm repo update #更新repo的chart
参考:添加Master节点 步骤
参考:添加Worker节点 步骤
[root@master01 ~]# kubectl drain master03 --delete-emptydir-data --force --ignore-daemonsets
[root@master01 ~]# kubectl delete node master03
[root@master03 ~]# kubeadm reset -f && rm -rf $HOME/.kube
[root@master01 ~]# kubectl drain worker04 --delete-emptydir-data --force --ignore-daemonsets
[root@master01 ~]# kubectl delete node worker04
[root@worker04 ~]# kubeadm reset -f && rm -rf $HOME/.kube
[root@worker04 ~]# rm -rf /etc/kubernetes/admin.conf /etc/kubernetes/kubelet.conf /etc/kubernetes/bootstrap-kubelet.conf /etc/kubernetes/controller-manager.conf /etc/kubernetes/scheduler.conf
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/126241.html
摘要:所以,选择把运行直接运行在宿主机中,使用容器部署其他组件。独立部署方式所需机器资源多按照集群的奇数原则,这种拓扑的集群关控制平面最少就要台宿主机了。 在上篇文章minikube部署中,有提到Minikube部署Kubernetes的核心就是Kubeadm,这篇文章来详细说明下Kubeadm原理及部署步骤。写这篇文章的时候,Kubernetes1.14刚刚发布,所以部署步骤以1.14版为...
摘要:所以,选择把运行直接运行在宿主机中,使用容器部署其他组件。独立部署方式所需机器资源多按照集群的奇数原则,这种拓扑的集群关控制平面最少就要台宿主机了。 在上篇文章minikube部署中,有提到Minikube部署Kubernetes的核心就是Kubeadm,这篇文章来详细说明下Kubeadm原理及部署步骤。写这篇文章的时候,Kubernetes1.14刚刚发布,所以部署步骤以1.14版为...
摘要:云原生的概念,由来自的于年首次提出,被一直延续使用至今。比如,一个优雅的互联网应用在设计过程中,需要遵循的一些基本原则和云原生有异曲同工之处。 欢迎访问网易云社区,了解更多网易技术产品运营经验。 云原生(Cloud Native)的概念,由来自Pivotal的MattStine于2013年首次提出,被一直延续使用至今。这个概念是Matt Stine根据其多年的架构和咨询经验总结出来的...
阅读 3473·2023-04-25 20:09
阅读 3684·2022-06-28 19:00
阅读 2994·2022-06-28 19:00
阅读 2995·2022-06-28 19:00
阅读 3048·2022-06-28 19:00
阅读 2834·2022-06-28 19:00
阅读 2969·2022-06-28 19:00
阅读 2578·2022-06-28 19:00