资讯专栏INFORMATION COLUMN

【论文阅读】Beyond OCR + VQA: 将OCR融入TextVQA的执行流程中形成更鲁棒更准

不知名网友 / 1234人阅读

摘要:模块基于预训练模型进行识别,识别出的结果与一起经过注意力机制得到加权的空间注意力,得到的结果与进行组合。五六结论将融入的前向处理流程,构建了一个鲁棒且准确的模型参考博客

 论文题目:Beyond OCR + VQA: Involving OCR into the Flow for Robust and Accurate TextVQA

 论文链接:https://dl.acm.org/doi/abs/10.1145/3474085.3475606

 

一、任务概述

  1.  视觉问答任务(VQA):将图像和关于图像的自然语言问题作为输入,生成自然语言答案作为输出。
  2.  文本视觉问答任务(TextVQA):面向文字识别的问答任务。

 二、Baseline

  2.1 Baseline 1: Look, Read, Reason & Answer (LoRRA):

  • 2019年提出,推出标准数据集,原文地址:https://arxiv.org/abs/1904.08920v2
  • 典型的TextVQA:将问题回答建模为分类任务,需要给定答案空间。

  • 多模态嵌入:问题embedding、图像中的物体进行embedding、OCR的结果进行embedding(FastText做pre-train)
  • 嵌入方式
    • 对问题进行GloVe Embedding,再通过LSTM得到问题嵌入 fQ(q),用于后续对图片特征以及OCR样本进行注意力加权平均。
    • 将图像进行特征提取,提取的特征fI(v)与fQ(q)一起经过注意力机制得到加权的空间注意力,得到的结果与fQ(q)进行组合。

    • OCR模块基于预训练模型(Faster RCNN + CTC)进行识别,识别出的结果fO(s)与fQ(q)一起经过注意力机制得到加权的空间注意力,得到的结果与fQ(q)进行组合。

    • contact一起之后过分类器(MLP),分类的类别为问题空间a1……an 加上 OCR是识别出的词

  2.2 Baseline 2:M4C

  • 主贡献:提出了迭代预测的解码方式,但我们更关注特征表示的部分

  • Question embedding:BERT-base模型的encoder,但只用前3层,得到矩阵shape=(K, d)
  • Detected object embedding:Faster-RCNN + Position,shape=(M, d)
  • 融合方式:Linear + LayerNorm
  • OCR token embedding 由四部分组成:
    • : 300维的FastText文本特征
    • : Faster RCNN特征,和detected object的获取方式一样
    • : 604维的Pyramidal Histogram of Characters(PHOC)特征
    • : 4维的位置特征,计算方式和detected object一样
    • 融合方式:前三个特征过linear后做layernorm,position多带带融合,再加起来

三、Motivation

  1. OCR的错误识别会较大程度影响多模态信息之间的交互(即fA的过程)
  2. 因为在表征空间中需要copy OCR识别的token,OCR的错误会较严重的影响解码器的性能(哪怕另两个分支完全准确也没法正确的输出)

四、Method

   4.1 Contribution

  1. 增强特征表示的鲁棒性:减小OCR错误和物体识别错误对推理的影响
  2. 增强解码器的鲁棒性:在答案预测模块提出一个上下文感知的答案修正模块(CRM)对“复制”的答案词进行校正。

   4.2 Architectural Details—— 视觉增强的文字表征模块 TVS (OCR增强)

  1. method
    • 文字图像矫正模块
    • 编码模块:45层ResNet+ 2层Bi-LSTM
    • 解码模块:单层 注意力机制的GRU
    • 中间语义模块:根据文字视觉信息预测语义信息
  2. train:利用外部数据集训练(SynthText + Synth90K)
  3. loss: OCR识别损失+语义损失
    • 语义损失由真实和预测的语义特征向量间的余弦距离计算得到
  4. 优势
    • 通过语义损失的监督,编码模块能产生与文字解码更相关的视觉特征
    • TVS为直接由文字图像的视觉特性获得语义表示提供可能。
  1. 整网中推理,OCR token details(n个文本框):
    • :  TVS的视觉特征
    • : FastText文本特征
    • : Faster RCNN特征
    • :  Pyramidal Histogram of Characters(PHOC)特征
    • :  4维的位置bounding box特征
    • 融合方式:

  4.3 Architectural Details—— 语义导向的物体表征 SEO-FRCN(Visual增强)

 

  • method:传统的Faster RCNN,在解码环节增加一个分支来 预测物体类别的embedding
    • 物体类别embedding的gt 时物体类别名称的语义特征。
  • train:使用Visual Genome数据集,backbone resnet101 预训练,新分支fine tune
  • loss:RPN loss + 四分支loss

  • 优势:能够拉近相似物体的图像相似度(例如 traffic light和traffic sign)
  • 整网中推理,Visual token details(m个物体):
    • :视觉特征
    • 位置特征
    • :预测的物体类别嵌入向量
    • 特征融合:

  4.3 Architectural Details——上下文感知的答案修正 CRM (解码结果增强)

  • method:在推理阶段,对于”直接复制OCR结果”进行改进。
    • 如果解码的输出指向图像中的文字,则将它视作一个候选词,利用输入的问题、其他文字信息和相关物体信息进行文字修正。
    • 使用多个OCR模块输出多个预测结果作为候选集,选出得分最高的结果作为最后的输出。
    • 组成:Transformer进行上下文信息融合 + linear&sigmoid 二分类器
  • training:如果候选集的结果与gt相同则为1,不同则为0,构建训练数据。二分类预测一个相关分数,最小化交叉熵损失进行训练。

 五、Experiment

 

 六、结论 

  1. 将OCR融入TextVQA的前向处理流程,构建了一个鲁棒且准确的TextVQA模型

参考博客

[1] https://zhuanlan.zhihu.com/p/250951251
[2] https://mp.weixin.qq.com/s/s7EP8ZiB_0UAv0M4VDhNGA

 

 

E-mail:hithongming@163.com

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/125370.html

相关文章

  • 深度学习应该使用复数吗?

    摘要:因为深度学习的正统观念在该领域已经很流行了。在机器和深度学习空间中进行的大多数数学分析倾向于使用贝叶斯思想作为参数。如果我们接受了目前深度学习的主流观点任何一层的微分都是公平的,那么或许我们应该使用存储多种变体的复分析。 深度学习只能使用实数吗?本文简要介绍了近期一些将复数应用于深度学习的若干研究,并指出使用复数可以实现更鲁棒的层间梯度信息传播、更高的记忆容量、更准确的遗忘行为、大幅降低的网...

    qianfeng 评论0 收藏0

发表评论

0条评论

不知名网友

|高级讲师

TA的文章

阅读更多
最新活动
阅读需要支付1元查看
<