资讯专栏INFORMATION COLUMN

手写HashMap,快手面试官直呼内行!

Lemon_95 / 1830人阅读

摘要:那既然频繁出,肯定不能是手撕红黑树我觉得面试官也多半撕不出来,不撕红黑树,那这道题还有点救,慢慢往下看。简单说来说,哈希表由两个要素构成桶数组和散列函数。所谓的哈希冲突,就是不同的经过哈希函数计算,落到了同一个下标。快手面试官真的吗我不信。

手写HashMap?这么狠,面试都卷到这种程度了?

第一次见到这个面试题,是在某个不方便透露姓名的Offer收割机大佬的文章:

手写HashMap,快手一面卒

这……我当时就麻了,我们都知道HashMap的数据结构是数组+链表+红黑树,这是要手撕红黑树的节奏吗?

后来,整理了一些面经,发现这道题在快手的面试出现还比较频繁,分析这道题应该在快手的面试题库。那既然频繁出,肯定不能是手撕红黑树——我觉得面试官也多半撕不出来,不撕红黑树,那这道题还有点救,慢慢往下看。

认识哈希表

HashMap其实是数据结构中的哈希表在Java里的实现。

哈希表本质

哈希表也叫散列表,我们先来看看哈希表的定义:

哈希表是根据关键码的值而直接进行访问的数据结构。

就像有人到公司找老三,前台小姐姐拿手一指,那个墙角的工位就是。

简单说来说,哈希表由两个要素构成:桶数组散列函数

  • 桶数组:一排工位
  • 散列函数:老三在墙角

桶数组

我们可能知道,有一类基础的数据结构线性表,而线性表又分两种,数组链表

哈希表数据结构里,存储元素的数据结构就是数组,数组里的每个单元都可以想象成一个(Bucket)。

假如给若干个程序员分配工位:蛋蛋熊大牛儿张三,我们观察到,这些名字比较有特色,最后一个字都是数字,我们可以把它提取出来作为关键码,这些一来,就可以把他们分配到对应编号的工位,没分配到的工位就让它先空着。

元素映射

那么在这种情况下,我们查找/插入/删除的时间复杂度是多少呢?很明显,都是O(1)

但咱们也不是葫芦娃,名字不能都叫一二三四五六七之类的,假如来的新人叫南宫大牛,那我们怎么分配他呢?

这就引入了我们的第二个关键要素——散列函数

散列函数

我们需要在元素和桶数组对应位置建立一种映射映射关系,这种映射关系就是散列函数,也可以叫哈希函数。

例如,我们一堆无规律的名字诸葛钢铁刘华强王司徒张全蛋……我们就需要通过散列函数,算出这些名字应该分配到哪一号工位。

散列函数

散列函数构造

散列函数也叫哈希函数,假如我们数据元素的key是整数或者可以转换为一个整数,可以通过这些常见方法来获取映射地址。

  • 直接定址法

    直接根据key来映射到对应的数组位置,例如1232放到下标1232的位置。

  • 数字分析法

    key的某些数字(例如十位和百位)作为映射的位置

  • 平方取中法

    key平方的中间几位作为映射的位置

  • 折叠法

    key分割成位数相同的几段,然后把它们的叠加和作为映射的位置

  • 除留余数法

    H(key)=key%p(p<=N),关键字除以一个不大于哈希表长度的正整数p,所得余数为哈希地址,这是应用最广泛的散列函数构造方法

散列函数构造

在Java里,Object类里提供了一个默认的hashCode()方法,它返回的是一个32位int形整数,其实也就是对象在内存里的存储地址。

但是,这个整数肯定是要经过处理的,上面几种方法里直接定址法可以排除,因为我们不可能建那么大的桶数组。

而且我们最后计算出来的散列地址,尽可能要在桶数组长度范围之内,所以我们选择除留取余法

哈希冲突

理想的情况,是每个数据元素经过哈希函数的计算,落在它独属的桶数组的位置。

但是现实通常不如人意,我们的空间是有限的,设计再好的哈希函数也不能完全避免哈希冲突。所谓的哈希冲突,就是不同的key经过哈希函数计算,落到了同一个下标。

哈希冲突

既然有了冲突,就得想办法解决冲突,常见的解决哈希冲突的办法有:

链地址法

也叫拉链法,看起来,像在桶数组上再拉一个链表出来,把发生哈希冲突的元素放到一个链表里,查找的时候,从前往后遍历链表,找到对应的key就行了。

链地址法

开放地址法

开放地址法,简单来说就是给冲突的元素再在桶数组里找到一个空闲的位置。

找到空闲位置的方法有很多种:

  • 线行探查法: 从冲突的位置开始,依次判断下一个位置是否空闲,直至找到空闲位置
  • 平方探查法: 从冲突的位置x开始,第一次增加1^2个位置,第二次增加2^2...,直至找到空闲的位置
  • 双散列函数探查法

……

开放地址法

再哈希法

构造多个哈希函数,发生冲突时,更换哈希函数,直至找到空闲位置。

建立公共溢出区

建立公共溢出区,把发生冲突的数据元素存储到公共溢出区。

很明显,接下来我们解决冲突,会使用链地址法

好了,哈希表的介绍就到这,相信你已经对哈希表的本质有了深刻的理解,接下来,进入coding时间。

HashMap实现

我们实现的简单的HashMap命名为ThirdHashMap,先确定整体的设计:

  • 散列函数:hashCode()+除留余数法
  • 冲突解决:链地址法

整体结构如下:

自定义HashMap整体结构

内部节点类

我们需要定义一个节点来作为具体数据的载体,它不仅要承载键值对,同样还得作为单链表的节点:

    /**     * 节点类     *     * @param      * @param      */    class Node {        //键值对        private K key;        private V value;        //链表,后继        private Node next;        public Node(K key, V value) {            this.key = key;            this.value = value;        }        public Node(K key, V value, Node next) {            this.key = key;            this.value = value;            this.next = next;        }    }

成员变量

主要有四个成员变量,其中桶数组作为装载数据元素的结构:

    //默认容量    final int DEFAULT_CAPACITY = 16;    //负载因子    final float LOAD_FACTOR = 0.75f;    //HashMap的大小    private int size;    //桶数组    Node[] buckets;

构造方法

构造方法有两个,无参构造方法,桶数组默认容量,有参指定桶数组容量。

    /**     * 无参构造器,设置桶数组默认容量     */    public ThirdHashMap() {        buckets = new Node[DEFAULT_CAPACITY];        size = 0;    }    /**     * 有参构造器,指定桶数组容量     *     * @param capacity     */    public ThirdHashMap(int capacity) {        buckets = new Node[capacity];        size = 0;    }

散列函数

散列函数,就是我们前面说的hashCode()和数组长度取余。

    /**     * 哈希函数,获取地址     *     * @param key     * @return     */    private int getIndex(K key, int length) {        //获取hash code        int hashCode = key.hashCode();        //和桶数组长度取余        int index = hashCode % length;        return Math.abs(index);    }

put方法

我用了一个putval方法来完成实际的逻辑,这是因为扩容也会用到这个方法。

大概的逻辑:

  • 获取元素插入位置
  • 当前位置为空,直接插入
  • 位置不为空,发生冲突,遍历链表
  • 如果元素key和节点相同,覆盖,否则新建节点插入链表头部
    /**     * put方法     *     * @param key     * @param value     * @return     */    public void put(K key, V value) {        //判断是否需要进行扩容        if (size >= buckets.length * LOAD_FACTOR) resize();        putVal(key, value, buckets);    }    /**     * 将元素存入指定的node数组     *     * @param key     * @param value     * @param table     */    private void putVal(K key, V value, Node[] table) {        //获取位置        int index = getIndex(key, table.length);        Node node = table[index];        //插入的位置为空        if (node == null) {            table[index] = new Node<>(key, value);            size++;            return;        }        //插入位置不为空,说明发生冲突,使用链地址法,遍历链表        while (node != null) {            //如果key相同,就覆盖掉            if ((node.key.hashCode() == key.hashCode())                    && (node.key == key || node.key.equals(key))) {                node.value = value;                return;            }            node = node.next;        }        //当前key不在链表中,插入链表头部        Node newNode = new Node(key, value, table[index]);        table[index] = newNode;        size++;    }

扩容方法

扩容的大概过程:

  • 创建两倍容量的新数组
  • 将当前桶数组的元素重新散列到新的数组
  • 新数组置为map的桶数组
    /**     * 扩容     */    private void resize() {        //创建一个两倍容量的桶数组        Node[] newBuckets = new Node[buckets.length * 2];        //将当前元素重新散列到新的桶数组        rehash(newBuckets);        buckets = newBuckets;    }    /**     * 重新散列当前元素     *     * @param newBuckets     */    private void rehash(Node[] newBuckets) {        //map大小重新计算        size = 0;        //将旧的桶数组的元素全部刷到新的桶数组里        for (int i = 0; i < buckets.length; i++) {            //为空,跳过            if (buckets[i] == null) {                continue;            }            Node node = buckets[i];            while (node != null) {                //将元素放入新数组                putVal(node.key, node.value, newBuckets);                node = node.next;            }        }    }

get方法

get方法就比较简单,通过散列函数获取地址,这里我省去了有没有成链表的判断,直接查找链表。

    /**     * 获取元素     *     * @param key     * @return     */    public V get(K key) {        //获取key对应的地址        int index = getIndex(key, buckets.length);        if (buckets[index] == null) return null;        Node node = buckets[index];        //查找链表        while (node != null) {            if ((node.key.hashCode() == key.hashCode())                    && (node.key == key || node.key.equals(key))) {                return node.value;            }            node = node.next;        }        return null;    }

完整代码:

完整代码

测试

测试代码如下:

    @Test    void test0() {        ThirdHashMap map = new ThirdHashMap();        for (int i = 0; i < 100; i++) {            map.put("刘华强" + i, "你这瓜保熟吗?" + i);        }        System.out.println(map.size());        for (int i = 0; i < 100; i++) {            System.out.println(map.get("刘华强" + i));        }    }    @Test    void test1() {        ThirdHashMap map = new ThirdHashMap();        map.put("刘华强1","哥们,你这瓜保熟吗?");        map.put("刘华强1","你这瓜熟我肯定要啊!");        System.out.println(map.get("刘华强1"));    }

大家可以自行跑一下看看结果。

总结

好了,到这,我们一个简单的HashMap就实现了,这下,面试快手再也不怕手写HashMap了。

快手面试官:真的吗?我不信。我就要你手写个红黑树版的……

瞬间狂暴

当然了,我们也发现,HashMap的O(1)时间复杂度操作是在冲突比较少的情况下,简单的哈希取余肯定不是最优的散列函数;冲突之后,链表拉的太长,同样影响性能;我们的扩容和put其实也存在线程安全的问题……

但是,现实里我们不用考虑那么多,因为李老爷已经帮我们写好了,我们只管调用就完了。

下一篇,会以面试对线的形式来走进李老爷操刀的HashMap!

点赞关注不迷路,咱们下期见!



参考:

[1].《数据结构与算法》

[2].构造哈希函数方法

[3].ACM金牌选手讲解LeetCode算法《哈希》

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/124807.html

相关文章

  • 金三银四,2019大厂Android高级工程师面试题整理

    摘要:原文地址游客前言金三银四,很多同学心里大概都准备着年后找工作或者跳槽。最近有很多同学都在交流群里求大厂面试题。 最近整理了一波面试题,包括安卓JAVA方面的,目前大厂还是以安卓源码,算法,以及数据结构为主,有一些中小型公司也会问到混合开发的知识,至于我为什么倾向于混合开发,我的一句话就是走上编程之路,将来你要学不仅仅是这些,丰富自己方能与世接轨,做好全栈的装备。 原文地址:游客kutd...

    tracymac7 评论0 收藏0
  • 小马哥Java项目实战训练营 极客大学

    摘要:百度网盘提取码一面试题熟练掌握是很关键的,大公司不仅仅要求你会使用几个,更多的是要你熟悉源码实现原理,甚至要你知道有哪些不足,怎么改进,还有一些有关的一些算法,设计模式等等。 ​​百度网盘​​提取码:u6C4 一、java面试题熟练掌握java是很关键的,大公司不仅仅要求你会使用几个api,更多的是要你熟悉源码实现原理,甚...

    不知名网友 评论0 收藏0

发表评论

0条评论

Lemon_95

|高级讲师

TA的文章

阅读更多
最新活动
阅读需要支付1元查看
<