上一篇文章,分析了Netty服务端启动的初始化过程,今天我们来分析一下Netty中的Reactor线程模型

在分析源码之前,我们先分析,哪些地方用到了EventLoop?

  • NioServerSocketChannel的连接监听注册
  • NioSocketChannel的IO事件注册

NioServerSocketChannel连接监听

在AbstractBootstrap类的initAndRegister()方法中,当NioServerSocketChannel初始化完成后,会调用case标记位置的代码进行注册。

final ChannelFuture initAndRegister() {    Channel channel = null;    try {        channel = channelFactory.newChannel();        init(channel);    } catch (Throwable t) {    }   //注册到boss线程的selector上。    ChannelFuture regFuture = config().group().register(channel);    if (regFuture.cause() != null) {        if (channel.isRegistered()) {            channel.close();        } else {            channel.unsafe().closeForcibly();        }    }    return regFuture;}

AbstractNioChannel.doRegister

按照代码的执行逻辑,最终会执行到AbstractNioChannel的doRegister()方法中。

@Overrideprotected void doRegister() throws Exception {    boolean selected = false;    for (;;) {        try {            //调用ServerSocketChannel的register方法,把当前服务端对象注册到boss线程的selector上            selectionKey = javaChannel().register(eventLoop().unwrappedSelector(), 0, this);            return;        } catch (CancelledKeyException e) {            if (!selected) {                // Force the Selector to select now as the "canceled" SelectionKey may still be                // cached and not removed because no Select.select(..) operation was called yet.                eventLoop().selectNow();                selected = true;            } else {                // We forced a select operation on the selector before but the SelectionKey is still cached                // for whatever reason. JDK bug ?                throw e;            }        }    }}

NioEventLoop的启动过程

NioEventLoop是一个线程,它的启动过程如下。

在AbstractBootstrap的doBind0方法中,获取了NioServerSocketChannel中的NioEventLoop,然后使用它来执行绑定端口的任务。

private static void doBind0(    final ChannelFuture regFuture, final Channel channel,    final SocketAddress localAddress, final ChannelPromise promise) {    //启动    channel.eventLoop().execute(new Runnable() {        @Override        public void run() {            if (regFuture.isSuccess()) {                channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE);            } else {                promise.setFailure(regFuture.cause());            }        }    });}

SingleThreadEventExecutor.execute

然后一路执行到SingleThreadEventExecutor.execute方法中,调用startThread()方法启动线程。

private void execute(Runnable task, boolean immediate) {    boolean inEventLoop = inEventLoop();    addTask(task);    if (!inEventLoop) {        startThread(); //启动线程        if (isShutdown()) {            boolean reject = false;            try {                if (removeTask(task)) {                    reject = true;                }            } catch (UnsupportedOperationException e) {                // The task queue does not support removal so the best thing we can do is to just move on and                // hope we will be able to pick-up the task before its completely terminated.                // In worst case we will log on termination.            }            if (reject) {                reject();            }        }    }    if (!addTaskWakesUp && immediate) {        wakeup(inEventLoop);    }}

startThread

private void startThread() {    if (state == ST_NOT_STARTED) {        if (STATE_UPDATER.compareAndSet(this, ST_NOT_STARTED, ST_STARTED)) {            boolean success = false;            try {                doStartThread(); //执行启动过程                success = true;            } finally {                if (!success) {                    STATE_UPDATER.compareAndSet(this, ST_STARTED, ST_NOT_STARTED);                }            }        }    }}

接着调用doStartThread()方法,通过executor.execute执行一个任务,在该任务中启动了NioEventLoop线程

private void doStartThread() {    assert thread == null;    executor.execute(new Runnable() { //通过线程池执行一个任务        @Override        public void run() {            thread = Thread.currentThread();            if (interrupted) {                thread.interrupt();            }            boolean success = false;            updateLastExecutionTime();            try {                SingleThreadEventExecutor.this.run(); //调用boss的NioEventLoop的run方法,开启轮询            }            //省略....        }    });}

NioEventLoop的轮询过程

当NioEventLoop线程被启动后,就直接进入到NioEventLoop的run方法中。

protected void run() {    int selectCnt = 0;    for (;;) {        try {            int strategy;            try {                strategy = selectStrategy.calculateStrategy(selectNowSupplier, hasTasks());                switch (strategy) {                    case SelectStrategy.CONTINUE:                        continue;                    case SelectStrategy.BUSY_WAIT:                    case SelectStrategy.SELECT:                        long curDeadlineNanos = nextScheduledTaskDeadlineNanos();                        if (curDeadlineNanos == -1L) {                            curDeadlineNanos = NONE; // nothing on the calendar                        }                        nextWakeupNanos.set(curDeadlineNanos);                        try {                            if (!hasTasks()) {                                strategy = select(curDeadlineNanos);                            }                        } finally {                            // This update is just to help block unnecessary selector wakeups                            // so use of lazySet is ok (no race condition)                            nextWakeupNanos.lazySet(AWAKE);                        }                        // fall through                    default:                }            } catch (IOException e) {                // If we receive an IOException here its because the Selector is messed up. Lets rebuild                // the selector and retry. https://github.com/netty/netty/issues/8566                rebuildSelector0();                selectCnt = 0;                handleLoopException(e);                continue;            }            selectCnt++;            cancelledKeys = 0;            needsToSelectAgain = false;            final int ioRatio = this.ioRatio;            boolean ranTasks;            if (ioRatio == 100) {                try {                    if (strategy > 0) {                        processSelectedKeys();                    }                } finally {                    // Ensure we always run tasks.                    ranTasks = runAllTasks();                }            } else if (strategy > 0) {                final long ioStartTime = System.nanoTime();                try {                    processSelectedKeys();                } finally {                    // Ensure we always run tasks.                    final long ioTime = System.nanoTime() - ioStartTime;                    ranTasks = runAllTasks(ioTime * (100 - ioRatio) / ioRatio);                }            } else {                ranTasks = runAllTasks(0); // This will run the minimum number of tasks            }            if (ranTasks || strategy > 0) {                if (selectCnt > MIN_PREMATURE_SELECTOR_RETURNS && logger.isDebugEnabled()) {                    logger.debug("Selector.select() returned prematurely {} times in a row for Selector {}.",                                 selectCnt - 1, selector);                }                selectCnt = 0;            } else if (unexpectedSelectorWakeup(selectCnt)) { // Unexpected wakeup (unusual case)                selectCnt = 0;            }        } catch (CancelledKeyException e) {            // Harmless exception - log anyway            if (logger.isDebugEnabled()) {                logger.debug(CancelledKeyException.class.getSimpleName() + " raised by a Selector {} - JDK bug?",                             selector, e);            }        } catch (Error e) {            throw (Error) e;        } catch (Throwable t) {            handleLoopException(t);        } finally {            // Always handle shutdown even if the loop processing threw an exception.            try {                if (isShuttingDown()) {                    closeAll();                    if (confirmShutdown()) {                        return;                    }                }            } catch (Error e) {                throw (Error) e;            } catch (Throwable t) {                handleLoopException(t);            }        }    }}

NioEventLoop的执行流程

NioEventLoop中的run方法是一个无限循环的线程,在该循环中主要做三件事情,如图9-1所示。

图9-1

  • 轮询处理I/O事件(select),轮询Selector选择器中已经注册的所有Channel的I/O就绪事件
  • 处理I/O事件,如果存在已经就绪的Channel的I/O事件,则调用processSelectedKeys进行处理
  • 处理异步任务(runAllTasks),Reactor线程有一个非常重要的职责,就是处理任务队列中的非I/O任务,Netty提供了ioRadio参数用来调整I/O时间和任务处理的时间比例。

轮询I/O就绪事件

我们先来看I/O时间相关的代码片段:

  1. 通过selectStrategy.calculateStrategy(selectNowSupplier, hasTasks())获取当前的执行策略
  2. 根据不同的策略,用来控制每次轮询时的执行策略。
protected void run() {        int selectCnt = 0;        for (;;) {            try {                int strategy;                try {                    strategy = selectStrategy.calculateStrategy(selectNowSupplier, hasTasks());                    switch (strategy) {                    case SelectStrategy.CONTINUE:                        continue;                    case SelectStrategy.BUSY_WAIT:                        // fall-through to SELECT since the busy-wait is not supported with NIO                    case SelectStrategy.SELECT:                        long curDeadlineNanos = nextScheduledTaskDeadlineNanos();                        if (curDeadlineNanos == -1L) {                            curDeadlineNanos = NONE; // nothing on the calendar                        }                        nextWakeupNanos.set(curDeadlineNanos);                        try {                            if (!hasTasks()) {                                strategy = select(curDeadlineNanos);                            }                        } finally {                            // This update is just to help block unnecessary selector wakeups                            // so use of lazySet is ok (no race condition)                            nextWakeupNanos.lazySet(AWAKE);                        }                        // fall through                    default:                    }                }                //省略....            }        }}

selectStrategy处理逻辑

@Overridepublic int calculateStrategy(IntSupplier selectSupplier, boolean hasTasks) throws Exception {    return hasTasks ? selectSupplier.get() : SelectStrategy.SELECT;}

如果hasTasks为true,表示当前NioEventLoop线程存在异步任务的情况下,则调用selectSupplier.get(),否则直接返回SELECT

其中selectSupplier.get()的定义如下:

private final IntSupplier selectNowSupplier = new IntSupplier() {    @Override    public int get() throws Exception {        return selectNow();    }};

该方法中调用的是selectNow()方法,这个方法是Selector选择器中的提供的非阻塞方法,执行后会立刻返回。

  • 如果当前已经有就绪的Channel,则会返回对应就绪Channel的数量
  • 否则,返回0.

分支处理

在上面一个步骤中获得了strategy之后,会根据不同的结果进行分支处理。

  • CONTINUE,表示需要重试。
  • BUSY_WAIT,由于在NIO中并不支持BUSY_WAIT,所以BUSY_WAIT和SELECT的执行逻辑是一样的
  • SELECT,表示需要通过select方法获取就绪的Channel列表,当NioEventLoop中不存在异步任务时,也就是任务队列为空,则返回该策略。
switch (strategy) {    case SelectStrategy.CONTINUE:        continue;    case SelectStrategy.BUSY_WAIT:        // fall-through to SELECT since the busy-wait is not supported with NIO    case SelectStrategy.SELECT:        long curDeadlineNanos = nextScheduledTaskDeadlineNanos();        if (curDeadlineNanos == -1L) {            curDeadlineNanos = NONE; // nothing on the calendar        }        nextWakeupNanos.set(curDeadlineNanos);        try {            if (!hasTasks()) {                strategy = select(curDeadlineNanos);            }        } finally {            // This update is just to help block unnecessary selector wakeups            // so use of lazySet is ok (no race condition)            nextWakeupNanos.lazySet(AWAKE);        }        // fall through    default:}

SelectStrategy.SELECT

当NioEventLoop线程中不存在异步任务时,则开始执行SELECT策略

//下一次定时任务触发截至时间,默认不是定时任务,返回 -1Llong curDeadlineNanos = nextScheduledTaskDeadlineNanos();if (curDeadlineNanos == -1L) {    curDeadlineNanos = NONE; // nothing on the calendar}nextWakeupNanos.set(curDeadlineNanos);try {    if (!hasTasks()) {        //2. taskQueue中任务执行完,开始执行select进行阻塞        strategy = select(curDeadlineNanos);    }} finally {    // This update is just to help block unnecessary selector wakeups    // so use of lazySet is ok (no race condition)    nextWakeupNanos.lazySet(AWAKE);}

select方法定义如下,默认情况下deadlineNanos=NONE,所以会调用select()方法阻塞。

private int select(long deadlineNanos) throws IOException {    if (deadlineNanos == NONE) {        return selector.select();    }    //计算select()方法的阻塞超时时间    long timeoutMillis = deadlineToDelayNanos(deadlineNanos + 995000L) / 1000000L;    return timeoutMillis <= 0 ? selector.selectNow() : selector.select(timeoutMillis);}

最终返回就绪的channel个数,后续的逻辑中会根据返回的就绪channel个数来决定执行逻辑。

NioEventLoop.run中的业务处理

业务处理的逻辑相对来说比较容易理解

  • 如果有就绪的channel,则处理就绪channel的IO事件
  • 处理完成后同步执行异步队列中的任务。
  • 另外,这里为了解决Java NIO中的空转问题,通过selectCnt记录了空转次数,一次循环发生了空转(既没有IO需要处理、也没有执行任何任务),那么记录下来(selectCnt); ,如果连续发生空转(selectCnt达到一定值),netty认为触发了NIO的BUG(unexpectedSelectorWakeup处理);

Java Nio中有一个bug,Java nio在Linux系统下的epoll空轮询问题。也就是在select()方法中,及时就绪的channel为0,也会从本来应该阻塞的操作中被唤醒,从而导致CPU 使用率达到100%。

@Overrideprotected void run() {    int selectCnt = 0;    for (;;) {        //省略....        selectCnt++;//selectCnt记录的是无功而返的select次数,即eventLoop空转的次数,为解决NIO BUG        cancelledKeys = 0;        needsToSelectAgain = false;        final int ioRatio = this.ioRatio;        boolean ranTasks;        if (ioRatio == 100) { //ioRadio执行时间占比是100%,默认是50%            try {                if (strategy > 0) { //strategy>0表示存在就绪的SocketChannel                    processSelectedKeys(); //执行就绪SocketChannel的任务                }            } finally {             //注意,将ioRatio设置为100,并不代表任务不执行,反而是每次将任务队列执行完                ranTasks = runAllTasks(); //确保总是执行队列中的任务            }        } else if (strategy > 0) { //strategy>0表示存在就绪的SocketChannel            final long ioStartTime = System.nanoTime(); //io时间处理开始时间            try {                processSelectedKeys(); //开始处理IO就绪事件            } finally {                // io事件执行结束时间                final long ioTime = System.nanoTime() - ioStartTime;                //基于本次循环处理IO的时间,ioRatio,计算出执行任务耗时的上限,也就是只允许处理多长时间异步任务                ranTasks = runAllTasks(ioTime * (100 - ioRatio) / ioRatio);            }        } else {            //这个分支代表:strategy=0,ioRatio<100,此时任务限时=0,意为:尽量少地执行异步任务            //这个分支和strategy>0实际是一码事,代码简化了一下而已            ranTasks = runAllTasks(0); // This will run the minimum number of tasks        }        if (ranTasks || strategy > 0) { //ranTasks=true,或strategy>0,说明eventLoop干活了,没有空转,清空selectCnt            if (selectCnt > MIN_PREMATURE_SELECTOR_RETURNS && logger.isDebugEnabled()) {                logger.debug("Selector.select() returned prematurely {} times in a row for Selector {}.",                             selectCnt - 1, selector);            }            selectCnt = 0;        }          //unexpectedSelectorWakeup处理NIO BUG        else if (unexpectedSelectorWakeup(selectCnt)) { // Unexpected wakeup (unusual case)            selectCnt = 0;        }    }}

processSelectedKeys

通过在select方法中,我们可以获得就绪的I/O事件数量,从而触发执行processSelectedKeys方法。

private void processSelectedKeys() {    if (selectedKeys != null) {        processSelectedKeysOptimized();    } else {        processSelectedKeysPlain(selector.selectedKeys());    }}

处理I/O事件时,有两个逻辑分支处理:

  • 一种是处理Netty优化过的selectedKeys,
  • 另一种是正常的处理逻辑

processSelectedKeys方法中根据是否设置了selectedKeys来判断使用哪种策略,默认使用的是Netty优化过的selectedKeys,它返回的对象是SelectedSelectionKeySet

processSelectedKeysOptimized

private void processSelectedKeysOptimized() {    for (int i = 0; i < selectedKeys.size; ++i) {        //1. 取出IO事件以及对应的channel        final SelectionKey k = selectedKeys.keys[i];        selectedKeys.keys[i] = null;//k的引用置null,便于gc回收,也表示该channel的事件处理完成避免重复处理        final Object a = k.attachment(); //获取保存在当前channel中的attachment,此时应该是NioServerSocketChannel        //处理当前的channel        if (a instanceof AbstractNioChannel) {             //对于boss NioEventLoop,轮询到的基本是连接事件,后续的事情就是通过他的pipeline将连接扔给一个worker NioEventLoop处理            //对于worker NioEventLoop来说,轮循道的基本商是IO读写事件,后续的事情就是通过他的pipeline将读取到的字节流传递给每个channelHandler来处理            processSelectedKey(k, (AbstractNioChannel) a);        } else {            @SuppressWarnings("unchecked")            NioTask task = (NioTask) a;            processSelectedKey(k, task);        }        if (needsToSelectAgain) {            // null out entries in the array to allow to have it GCed once the Channel close            // See https://github.com/netty/netty/issues/2363            selectedKeys.reset(i + 1);            selectAgain();            i = -1;        }    }}

processSelectedKey

private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {    final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe();    if (!k.isValid()) {        final EventLoop eventLoop;        try {            eventLoop = ch.eventLoop();        } catch (Throwable ignored) {        }        if (eventLoop == this) {            // close the channel if the key is not valid anymore            unsafe.close(unsafe.voidPromise());        }        return;    }    try {        int readyOps = k.readyOps(); //获取当前key所属的操作类型        if ((readyOps & SelectionKey.OP_CONNECT) != 0) {//如果是连接类型            int ops = k.interestOps();            ops &= ~SelectionKey.OP_CONNECT;            k.interestOps(ops);            unsafe.finishConnect();        }        if ((readyOps & SelectionKey.OP_WRITE) != 0) { //如果是写类型            ch.unsafe().forceFlush();        }        //如果是读类型或者ACCEPT类型。则执行unsafe.read()方法,unsafe的实例对象为 NioMessageUnsafe        if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {            unsafe.read();        }    } catch (CancelledKeyException ignored) {        unsafe.close(unsafe.voidPromise());    }}

NioMessageUnsafe.read()

假设此时是一个读操作,或者是客户端建立连接,那么代码执行逻辑如下,

@Overridepublic void read() {    assert eventLoop().inEventLoop();    final ChannelConfig config = config();    final ChannelPipeline pipeline = pipeline(); //如果是第一次建立连接,此时的pipeline是ServerBootstrapAcceptor    final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();    allocHandle.reset(config);    boolean closed = false;    Throwable exception = null;    try {        try {            do {                int localRead = doReadMessages(readBuf);                if (localRead == 0) {                    break;                }                if (localRead < 0) {                    closed = true;                    break;                }                allocHandle.incMessagesRead(localRead);            } while (continueReading(allocHandle));        } catch (Throwable t) {            exception = t;        }        int size = readBuf.size();        for (int i = 0; i < size; i ++) {            readPending = false;            pipeline.fireChannelRead(readBuf.get(i));  //调用pipeline中的channelRead方法        }        readBuf.clear();        allocHandle.readComplete();        pipeline.fireChannelReadComplete();        if (exception != null) {            closed = closeOnReadError(exception);            pipeline.fireExceptionCaught(exception); //调用pipeline中的ExceptionCaught方法        }        if (closed) {            inputShutdown = true;            if (isOpen()) {                close(voidPromise());            }        }    } finally {        if (!readPending && !config.isAutoRead()) {            removeReadOp();        }    }}

SelectedSelectionKeySet的优化

Netty中自己封装实现了一个SelectedSelectionKeySet,用来优化原本SelectorKeys的结构,它是怎么进行优化的呢?先来看它的代码定义

final class SelectedSelectionKeySet extends AbstractSet {    SelectionKey[] keys;    int size;    SelectedSelectionKeySet() {        keys = new SelectionKey[1024];    }    @Override    public boolean add(SelectionKey o) {        if (o == null) {            return false;        }        keys[size++] = o;        if (size == keys.length) {            increaseCapacity();        }        return true;    }}

SelectedSelectionKeySet内部使用的是SelectionKey数组,所有在processSelectedKeysOptimized方法中可以直接通过遍历数组来取出就绪的I/O事件。

而原来的Set<SelectionKey>返回的是HashSet类型,两者相比,SelectionKey[]不需要考虑哈希冲突的问题,所以可以实现O(1)时间复杂度的add操作。

SelectedSelectionKeySet的初始化

netty通过反射的方式,把Selector对象内部的selectedKeys和publicSelectedKeys替换为SelectedSelectionKeySet。

原本的selectedKeys和publicSelectedKeys这两个字段都是HashSet类型,替换之后变成了SelectedSelectionKeySet。当有就绪的key时,会直接填充到SelectedSelectionKeySet的数组中。后续只需要遍历即可。

private SelectorTuple openSelector() {    final Class selectorImplClass = (Class) maybeSelectorImplClass;    final SelectedSelectionKeySet selectedKeySet = new SelectedSelectionKeySet();    //使用反射    Object maybeException = AccessController.doPrivileged(new PrivilegedAction() {        @Override        public Object run() {            try {                //Selector内部的selectedKeys字段                Field selectedKeysField = selectorImplClass.getDeclaredField("selectedKeys");                //Selector内部的publicSelectedKeys字段                Field publicSelectedKeysField = selectorImplClass.getDeclaredField("publicSelectedKeys");                if (PlatformDependent.javaVersion() >= 9 && PlatformDependent.hasUnsafe()) {                    //获取selectedKeysField字段偏移量                    long selectedKeysFieldOffset = PlatformDependent.objectFieldOffset(selectedKeysField);                    //获取publicSelectedKeysField字段偏移量                    long publicSelectedKeysFieldOffset =                        PlatformDependent.objectFieldOffset(publicSelectedKeysField);                    if (selectedKeysFieldOffset != -1 && publicSelectedKeysFieldOffset != -1) {                        //替换为selectedKeySet                        PlatformDependent.putObject(                            unwrappedSelector, selectedKeysFieldOffset, selectedKeySet);                        PlatformDependent.putObject(                            unwrappedSelector, publicSelectedKeysFieldOffset, selectedKeySet);                        return null;                    }                    // We could not retrieve the offset, lets try reflection as last-resort.                }                Throwable cause = ReflectionUtil.trySetAccessible(selectedKeysField, true);                if (cause != null) {                    return cause;                }                cause = ReflectionUtil.trySetAccessible(publicSelectedKeysField, true);                if (cause != null) {                    return cause;                }                selectedKeysField.set(unwrappedSelector, selectedKeySet);                publicSelectedKeysField.set(unwrappedSelector, selectedKeySet);                return null;            } catch (NoSuchFieldException e) {                return e;            } catch (IllegalAccessException e) {                return e;            }        }    });    if (maybeException instanceof Exception) {        selectedKeys = null;        Exception e = (Exception) maybeException;        logger.trace("failed to instrument a special java.util.Set into: {}", unwrappedSelector, e);        return new SelectorTuple(unwrappedSelector);    }    selectedKeys = selectedKeySet;}

异步任务的执行流程

分析完上面的流程后,我们继续来看NioEventLoop中的run方法中,针对异步任务的处理流程

@Overrideprotected void run() {    int selectCnt = 0;    for (;;) {        ranTasks = runAllTasks();    }}

runAllTask

需要注意,NioEventLoop可以支持定时任务的执行,通过nioEventLoop.schedule()来完成。

protected boolean runAllTasks() {    assert inEventLoop();    boolean fetchedAll;    boolean ranAtLeastOne = false;    do {        fetchedAll = fetchFromScheduledTaskQueue(); //合并定时任务到普通任务队列        if (runAllTasksFrom(taskQueue)) { //循环执行taskQueue中的任务            ranAtLeastOne = true;        }    } while (!fetchedAll);      if (ranAtLeastOne) { //如果任务全部执行完成,记录执行完完成时间        lastExecutionTime = ScheduledFutureTask.nanoTime();    }    afterRunningAllTasks();//执行收尾任务    return ranAtLeastOne;}

fetchFromScheduledTaskQueue

遍历scheduledTaskQueue中的任务,添加到taskQueue中。

private boolean fetchFromScheduledTaskQueue() {    if (scheduledTaskQueue == null || scheduledTaskQueue.isEmpty()) {        return true;    }    long nanoTime = AbstractScheduledEventExecutor.nanoTime();    for (;;) {        Runnable scheduledTask = pollScheduledTask(nanoTime);        if (scheduledTask == null) {            return true;        }        if (!taskQueue.offer(scheduledTask)) {            // No space left in the task queue add it back to the scheduledTaskQueue so we pick it up again.            scheduledTaskQueue.add((ScheduledFutureTask) scheduledTask);            return false;        }    }}

任务添加方法execute

NioEventLoop内部有两个非常重要的异步任务队列,分别是普通任务和定时任务队列,针对这两个队列提供了两个方法分别向两个队列中添加任务。

  • execute()
  • schedule()

其中,execute方法的定义如下。

private void execute(Runnable task, boolean immediate) {    boolean inEventLoop = inEventLoop();    addTask(task); //把当前任务添加到阻塞队列中    if (!inEventLoop) { //如果是非NioEventLoop        startThread(); //启动线程        if (isShutdown()) { //如果当前NioEventLoop已经是停止状态            boolean reject = false;            try {                if (removeTask(task)) {                     reject = true;                }            } catch (UnsupportedOperationException e) {                // The task queue does not support removal so the best thing we can do is to just move on and                // hope we will be able to pick-up the task before its completely terminated.                // In worst case we will log on termination.            }            if (reject) {                reject();            }        }    }    if (!addTaskWakesUp && immediate) {        wakeup(inEventLoop);    }}

Nio的空轮转问题

所谓的空轮训,是指我们在执行selector.select()方法时,如果没有就绪的SocketChannel时,当前线程会被阻塞 。 而空轮询是指当没有就绪SocketChannel时,会被触发唤醒。

而这个唤醒是没有任何读写请求的,从而导致线程在做无效的轮询,使得CPU占用率较高。

导致这个问题的根本原因是:

在部分Linux的2.6的kernel中,poll和epoll对于突然中断的连接socket会对返回的eventSet事件集合置为POLLHUP,也可能是POLLERR,eventSet事件集合发生了变化,这就可能导致Selector会被唤醒。这是与操作系统机制有关系的,JDK虽然仅仅是一个兼容各个操作系统平台的软件,但很遗憾在JDK5和JDK6最初的版本中(严格意义上来将,JDK部分版本都是),这个问题并没有解决,而将这个帽子抛给了操作系统方,这也就是这个bug最终一直到2013年才最终修复的原因,最终影响力太广。

Netty是如何解决这个问题的呢?我们回到NioEventLoop的run方法中

@Overrideprotected void run() {    int selectCnt = 0;    for (;;) {        //selectCnt记录的是无功而返的select次数,即eventLoop空转的次数,为解决NIO BUG        selectCnt++;         //ranTasks=true,或strategy>0,说明eventLoop干活了,没有空转,清空selectCnt        if (ranTasks || strategy > 0) {            //如果选择操作计数器的值,大于最小选择器重构阈值,则输出log            if (selectCnt > MIN_PREMATURE_SELECTOR_RETURNS && logger.isDebugEnabled()) {                logger.debug("Selector.select() returned prematurely {} times in a row for Selector {}.",                             selectCnt - 1, selector);            }            selectCnt = 0;        }         //unexpectedSelectorWakeup处理NIO BUG        else if (unexpectedSelectorWakeup(selectCnt)) { // Unexpected wakeup (unusual case)            selectCnt = 0;        }    }}

unexpectedSelectorWakeup

private boolean unexpectedSelectorWakeup(int selectCnt) {    if (Thread.interrupted()) {        if (logger.isDebugEnabled()) {            logger.debug("Selector.select() returned prematurely because " +                         "Thread.currentThread().interrupt() was called. Use " +                         "NioEventLoop.shutdownGracefully() to shutdown the NioEventLoop.");        }        return true;    }    //如果选择重构的阈值大于0, 默认值是512次、 并且当前触发的空轮询次数大于 512次。,则触发重构    if (SELECTOR_AUTO_REBUILD_THRESHOLD > 0 &&        selectCnt >= SELECTOR_AUTO_REBUILD_THRESHOLD) {        // The selector returned prematurely many times in a row.        // Rebuild the selector to work around the problem.        logger.warn("Selector.select() returned prematurely {} times in a row; rebuilding Selector {}.",                    selectCnt, selector);        rebuildSelector();        return true;    }    return false;}

rebuildSelector()

public void rebuildSelector() {    if (!inEventLoop()) { //如果不是在eventLoop中执行,则使用异步线程执行        execute(new Runnable() {            @Override            public void run() {                rebuildSelector0();            }        });        return;    }    rebuildSelector0();}

rebuildSelector0

这个方法的主要作用: 重新创建一个选择器,替代当前事件循环中的选择器

private void rebuildSelector0() {    final Selector oldSelector = selector; //获取老的selector选择器    final SelectorTuple newSelectorTuple; //定义新的选择器    if (oldSelector == null) { //如果老的选择器为空,直接返回        return;    }    try {        newSelectorTuple = openSelector(); //创建一个新的选择器    } catch (Exception e) {        logger.warn("Failed to create a new Selector.", e);        return;    }    // Register all channels to the new Selector.    int nChannels = 0;    for (SelectionKey key: oldSelector.keys()) {//遍历注册到选择器的选择key集合        Object a = key.attachment();        try {             //如果选择key无效或选择关联的通道已经注册到新的选择器,则跳出当前循环            if (!key.isValid() || key.channel().keyFor(newSelectorTuple.unwrappedSelector) != null) {                continue;            }            //获取key的选择关注事件集            int interestOps = key.interestOps();            key.cancel();//取消选择key          //注册选择key到新的选择器            SelectionKey newKey = key.channel().register(newSelectorTuple.unwrappedSelector, interestOps, a);            if (a instanceof AbstractNioChannel) {//如果是nio通道,则更新通道的选择key                // Update SelectionKey                ((AbstractNioChannel) a).selectionKey = newKey;            }            nChannels ++;        } catch (Exception e) {            logger.warn("Failed to re-register a Channel to the new Selector.", e);            if (a instanceof AbstractNioChannel) {                AbstractNioChannel ch = (AbstractNioChannel) a;                ch.unsafe().close(ch.unsafe().voidPromise());            } else {                @SuppressWarnings("unchecked")                NioTask task = (NioTask) a;                invokeChannelUnregistered(task, key, e);            }        }    }    //更新当前事件循环选择器    selector = newSelectorTuple.selector;    unwrappedSelector = newSelectorTuple.unwrappedSelector;    try {        // time to close the old selector as everything else is registered to the new one        oldSelector.close(); //关闭原始选择器    } catch (Throwable t) {        if (logger.isWarnEnabled()) {            logger.warn("Failed to close the old Selector.", t);        }    }    if (logger.isInfoEnabled()) {        logger.info("Migrated " + nChannels + " channel(s) to the new Selector.");    }}

从上述过程中我们发现,Netty解决NIO空轮转问题的方式,是通过重建Selector对象来完成的,在这个重建过程中,核心是把Selector中所有的SelectionKey重新注册到新的Selector上,从而巧妙的避免了JDK epoll空轮训问题。

连接的建立及处理过程

在9.2.4.3节中,提到了当客户端有连接或者读事件发送到服务端时,会调用NioMessageUnsafe类的read()方法。

public void read() {    assert eventLoop().inEventLoop();    final ChannelConfig config = config();    final ChannelPipeline pipeline = pipeline();    final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();    allocHandle.reset(config);    boolean closed = false;    Throwable exception = null;    try {        try {            do {                //如果有客户端连接进来,则localRead为1,否则返回0                int localRead = doReadMessages(readBuf);                if (localRead == 0) {                    break;                }                if (localRead < 0) {                    closed = true;                    break;                }                allocHandle.incMessagesRead(localRead); //累计增加read消息数量            } while (continueReading(allocHandle));        } catch (Throwable t) {            exception = t;        }        int size = readBuf.size(); //遍历客户端连接列表        for (int i = 0; i < size; i ++) {            readPending = false;            pipeline.fireChannelRead(readBuf.get(i)); //调用pipeline中handler的channelRead方法。        }        readBuf.clear(); //清空集合        allocHandle.readComplete();        pipeline.fireChannelReadComplete(); //触发pipeline中handler的readComplete方法        if (exception != null) {            closed = closeOnReadError(exception);            pipeline.fireExceptionCaught(exception);        }        if (closed) {            inputShutdown = true;            if (isOpen()) {                close(voidPromise());            }        }    } finally {        if (!readPending && !config.isAutoRead()) {            removeReadOp();        }    }}

pipeline.fireChannelRead(readBuf.get(i))

继续来看pipeline的触发方法,此时的pipeline组成,如果当前是连接事件,那么pipeline = ServerBootstrap$ServerBootstrapAcceptor。

static void invokeChannelRead(final AbstractChannelHandlerContext next, Object msg) {    final Object m = next.pipeline.touch(ObjectUtil.checkNotNull(msg, "msg"), next);    EventExecutor executor = next.executor();    if (executor.inEventLoop()) {        next.invokeChannelRead(m); //获取pipeline中的下一个节点,调用该handler的channelRead方法    } else {        executor.execute(new Runnable() {            @Override            public void run() {                next.invokeChannelRead(m);            }        });    }}

ServerBootstrapAcceptor

ServerBootstrapAcceptor是NioServerSocketChannel中一个特殊的Handler,专门用来处理客户端连接事件,该方法中核心的目的是把针对SocketChannel的handler链表,添加到当前NioSocketChannel中的pipeline中。

public void channelRead(ChannelHandlerContext ctx, Object msg) {    final Channel child = (Channel) msg;    child.pipeline().addLast(childHandler);  //把服务端配置的childHandler,添加到当前NioSocketChannel中的pipeline中    setChannelOptions(child, childOptions, logger); //设置NioSocketChannel的属性    setAttributes(child, childAttrs);     try {        //把当前的NioSocketChannel注册到Selector上,并且监听一个异步事件。        childGroup.register(child).addListener(new ChannelFutureListener() {            @Override            public void operationComplete(ChannelFuture future) throws Exception {                if (!future.isSuccess()) {                    forceClose(child, future.cause());                }            }        });    } catch (Throwable t) {        forceClose(child, t);    }}

pipeline的构建过程

9.6.2节中,child其实就是一个NioSocketChannel,它是在NioServerSocketChannel中,当接收到一个新的链接时,创建对象。

@Overrideprotected int doReadMessages(List buf) throws Exception {    SocketChannel ch = SocketUtils.accept(javaChannel());    try {        if (ch != null) {            buf.add(new NioSocketChannel(this, ch)); //这里            return 1;        }    } catch (Throwable t) {        logger.warn("Failed to create a new channel from an accepted socket.", t);        try {            ch.close();        } catch (Throwable t2) {            logger.warn("Failed to close a socket.", t2);        }    }    return 0;}

而NioSocketChannel在构造时,调用了父类AbstractChannel中的构造方法,初始化了一个pipeline.

protected AbstractChannel(Channel parent) {    this.parent = parent;    id = newId();    unsafe = newUnsafe();    pipeline = newChannelPipeline();}

DefaultChannelPipeline

pipeline的默认实例是DefaultChannelPipeline,构造方法如下。

protected DefaultChannelPipeline(Channel channel) {    this.channel = ObjectUtil.checkNotNull(channel, "channel");    succeededFuture = new SucceededChannelFuture(channel, null);    voidPromise =  new VoidChannelPromise(channel, true);    tail = new TailContext(this);    head = new HeadContext(this);    head.next = tail;    tail.prev = head;}

初始化了一个头节点和尾节点,组成一个双向链表,如图9-2所示

图9-2

NioSocketChannel中handler链的构成

再回到ServerBootstrapAccepter的channelRead方法中,收到客户端连接时,触发了NioSocketChannel中的pipeline的添加

以下代码是DefaultChannelPipeline的addLast方法。

@Overridepublic final ChannelPipeline addLast(EventExecutorGroup executor, ChannelHandler... handlers) {    ObjectUtil.checkNotNull(handlers, "handlers");    for (ChannelHandler h: handlers) { //遍历handlers列表,此时这里的handler是ChannelInitializer回调方法        if (h == null) {            break;        }        addLast(executor, null, h);    }    return this;}

addLast

把服务端配置的ChannelHandler,添加到pipeline中,注意,此时的pipeline中保存的是ChannelInitializer回调方法。

@Overridepublic final ChannelPipeline addLast(EventExecutorGroup group, String name, ChannelHandler handler) {    final AbstractChannelHandlerContext newCtx;    synchronized (this) {        checkMultiplicity(handler); //检查是否有重复的handler        //创建新的DefaultChannelHandlerContext节点        newCtx = newContext(group, filterName(name, handler), handler);        addLast0(newCtx);  //添加新的DefaultChannelHandlerContext到ChannelPipeline        if (!registered) {             newCtx.setAddPending();            callHandlerCallbackLater(newCtx, true);            return this;        }        EventExecutor executor = newCtx.executor();        if (!executor.inEventLoop()) {            callHandlerAddedInEventLoop(newCtx, executor);            return this;        }    }    callHandlerAdded0(newCtx);    return this;}

这个回调方法什么时候触发调用呢?其实就是在ServerBootstrapAcceptor这个类的channelRead方法中,注册当前NioSocketChannel时

childGroup.register(child).addListener(new ChannelFutureListener() {}

最终按照之前我们上一节课源码分析的思路,定位到AbstractChannel中的register0方法中。

private void register0(ChannelPromise promise) {            try {                // check if the channel is still open as it could be closed in the mean time when the register                // call was outside of the eventLoop                if (!promise.setUncancellable() || !ensureOpen(promise)) {                    return;                }                boolean firstRegistration = neverRegistered;                doRegister();                neverRegistered = false;                registered = true;                //                pipeline.invokeHandlerAddedIfNeeded();            }}

callHandlerAddedForAllHandlers

pipeline.invokeHandlerAddedIfNeeded()方法,向下执行,会进入到DefaultChannelPipeline这个类中的callHandlerAddedForAllHandlers方法中

private void callHandlerAddedForAllHandlers() {    final PendingHandlerCallback pendingHandlerCallbackHead;    synchronized (this) {        assert !registered;        // This Channel itself was registered.        registered = true;        pendingHandlerCallbackHead = this.pendingHandlerCallbackHead;        // Null out so it can be GCed.        this.pendingHandlerCallbackHead = null;    }    //从等待被调用的handler 回调列表中,取出任务来执行。    PendingHandlerCallback task = pendingHandlerCallbackHead;    while (task != null) {        task.execute();        task = task.next;    }}

我们发现,pendingHandlerCallbackHead这个单向链表,是在callHandlerCallbackLater方法中被添加的,

而callHandlerCallbackLater又是在addLast方法中添加的,所以构成了一个异步完整的闭环。

ChannelInitializer.handlerAdded

task.execute()方法执行路径是

callHandlerAdded0 -> ctx.callHandlerAdded ->

​ -------> AbstractChannelHandlerContext.callHandlerAffffded()

​ ---------------> ChannelInitializer.handlerAdded

调用initChannel方法来初始化NioSocketChannel中的Channel.

@Overridepublic void handlerAdded(ChannelHandlerContext ctx) throws Exception {    if (ctx.channel().isRegistered()) {        // This should always be true with our current DefaultChannelPipeline implementation.        // The good thing about calling initChannel(...) in handlerAdded(...) is that there will be no ordering        // surprises if a ChannelInitializer will add another ChannelInitializer. This is as all handlers        // will be added in the expected order.        if (initChannel(ctx)) {            // We are done with init the Channel, removing the initializer now.            removeState(ctx);        }    }}

接着,调用initChannel抽象方法,该方法由具体的实现类来完成。

private boolean initChannel(ChannelHandlerContext ctx) throws Exception {    if (initMap.add(ctx)) { // Guard against re-entrance.        try {            initChannel((C) ctx.channel());        } catch (Throwable cause) {            // Explicitly call exceptionCaught(...) as we removed the handler before calling initChannel(...).            // We do so to prevent multiple calls to initChannel(...).            exceptionCaught(ctx, cause);        } finally {            ChannelPipeline pipeline = ctx.pipeline();            if (pipeline.context(this) != null) {                pipeline.remove(this);            }        }        return true;    }    return false;}

ChannelInitializer的实现,是我们自定义Server中的匿名内部类,ChannelInitializer。因此通过这个回调来完成当前NioSocketChannel的pipeline的构建过程。

public static void main(String[] args){    EventLoopGroup boss = new NioEventLoopGroup();    //2 用于对接受客户端连接读写操作的线程工作组    EventLoopGroup work = new NioEventLoopGroup();    ServerBootstrap b = new ServerBootstrap();    b.group(boss, work) //绑定两个工作线程组        .channel(NioServerSocketChannel.class)  //设置NIO的模式        // 初始化绑定服务通道        .childHandler(new ChannelInitializer() {            @Override            protected void initChannel(SocketChannel sc) throws Exception {                sc.pipeline()                    .addLast(                    new LengthFieldBasedFrameDecoder(1024,                                                     9,4,0,0))                    .addLast(new MessageRecordEncoder())                    .addLast(new MessageRecordDecode())                    .addLast(new ServerHandler());            }        });}

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/124412.html

相关文章

  • #yyds干货盘点#学不懂Netty?看不懂源码?不存在的,这篇文章手把手带你阅读Netty源码

    摘要:简单来说就是把注册的动作异步化,当异步执行结束后会把执行结果回填到中抽象类一般就是公共逻辑的处理,而这里的处理主要就是针对一些参数的判断,判断完了之后再调用方法。 阅读这篇文章之前,建议先阅读和这篇文章关联的内容。 1. 详细剖析分布式微服务架构下网络通信的底层实现原理(图解) 2. (年薪60W的技巧)工作了5年,你真的理解Netty以及为什么要用吗?(深度干货)...

    zsirfs 评论0 收藏0
  • Netty 源码分析 三 我就是大名鼎鼎的 EventLoop(一)

    摘要:目录源码之下无秘密做最好的源码分析教程源码分析之番外篇的前生今世的前生今世之一简介的前生今世之二小结的前生今世之三详解的前生今世之四详解源码分析之零磨刀不误砍柴工源码分析环境搭建源码分析之一揭开神秘的红盖头源码分析之一揭开神秘的红盖头客户端 目录 源码之下无秘密 ── 做最好的 Netty 源码分析教程 Netty 源码分析之 番外篇 Java NIO 的前生今世 Java NI...

    livem 评论0 收藏0
  • #yyds干货盘点# 常用软件框架,总有一个用的上

    摘要:一界面框架是微软在其最新桌面操作系统中使用的图形用户界面。干货盘点二服务在写后台代码的过程中,经常会遇到要写一些多带带的服务。这个传统的控件开发起来很不方面,使用也不友好。发现有用的,这个第三方的框架,集成的很好,用起来也方便。一、Fluent Ribbon界面框架Fluent/Ribbon是微软在其最新桌面操作系统Windows 7中使用的图形用户界面。 Windows平台的进化,伴随着系...

    番茄西红柿 评论0 收藏2637
  • #yyds干货盘点#Apache的三种模式

    1.Apache prefork模型:apache的默认的模型预派 生模式,有 一个主控制进程,然后 生成多个 子进程,使 用select模型,最 大并发1024,每个 子进程有 一个独 立的线程响应 用户请求,相对 比较占 用内存,但是 比较稳定,可以设置最 大和最 小进程数,是最古 老 的 一种模式,也是最稳定的模式,适 用于访问量 不 是很 大的场景。优点:稳定缺点: 大量 用户访问慢,占...

    loonggg 评论0 收藏0

发表评论

0条评论

最新活动
阅读需要支付1元查看
<