资讯专栏INFORMATION COLUMN

RS485电路设计详解

王伟廷 / 2740人阅读

摘要:在板卡设计中,共模电感也是起滤波的作用,用于抑制高速信号线产生的电磁波向外辐射发射。

一:简介

RS-485是针对UART串口的一种接口标准,它定义了串行通信系统中发送器和接收器的一系列电气特性。相比于RS-232,RS-485标准的通信系统抗干扰能力较强,可实现长距离数据传输,同时支持多个收发器连接到同一个通信网络中。因此,RS-485在工业控制领域以及有类似需求的系统中得到了广泛的应用。

二:原理图设计


由于RS-485为半双工通信方式,需要通过使能信号来控制发送和接收过程。在下图中,电平转换芯片SP3485的2号引脚为低电平接收使能,3号引脚为高电平发送使能。在这里我们将两个引脚连接在一起,只需要通过一个信号RS485_DE即可控制收发过程:当RS485_DE为高电平时,SP3485 处于发送过程;当RS485_DE为低电平时,SP3485处于接收过程。

注:485 总线通常使用特性阻抗为120Ω的双绞线,因此在485总线的首尾两端增加120Ω终端电阻来避免信号反射问题。
为什么需要加上下拉电阻?
根据 RS-485 标准,当485总线差分电压大于+200mV时,485收发器输出高电平;当 485 总线差分电压小于-200mV 时,485 收发器输出低电平;当 485总线上的电压在-200mV~+200mV 时,485 收发器可能输出高电平也可能输出低电平,但一般总处于一种电平状态,若 485 收发器的输出低电平,这对于 UART通信来说是一个起始位,此时通信会不正常。
当 485 总线处于开路(485 收发器与总线断开)或者空闲状态(485 收发器全部处于接收状态,总线没有收发器进行驱动)时,485 总线的差分电压基本为0,此时总线就处于一个不确定的状态。同时由于目前 485 芯片为了提高总线上的节点数,输入阻抗设计的比较高,例如输入阻抗为 1/4 单位阻抗或者 1/8 单位阻抗(单位阻抗为 12kΩ,1/4 单位阻抗为 48kΩ),在管脚悬空时容易受到电磁干扰。因此为了防止485总线出现上述情况,通常在485总线上增加上下拉电阻(通常A接上拉电阻,B总线下拉电阻)。若使用隔离 RS-485 收发模块(例如RSM485PCHT),由于模块内部具有上下拉电阻(对于 RSM485PCHT,内部
上下拉电阻为 24kΩ),因此在模块外部一般不需要增加上下拉电阻。

参考原理图:RSM3485ECHT

参考原理图:RS485接口6KV防雷电路设计方案

参考EMC设计:

接口电路设计概述:
RS485用于设备与计算机或其它设备之间通讯,在产品应用中其走线多与电源、功率信号等混合在一起,存在EMC隐患。本方案从EMC原理上,进行了相关的抑制干扰和抗敏感度的设计,从设计层次解决EMC问题。

三:电路EMC设计

(1) 电路滤波设计要点:
L1为共模电感,共模电感能够对衰减共模干扰,对单板内部的干扰以及外部的干扰都能抑制,能提高产品的抗干扰能力,同时也能减小通过429信号线对外的辐射,共模电感阻抗选择范围为120Ω/100MHz ~2200Ω/100MHz,典型值选取1000Ω/100MHz;

共模电感(Common mode Choke),也叫共模扼流圈,常用于电脑的开关电源中过滤共模的电磁干扰信号。在板卡设计中,共模电感也是起EMI滤波的作用,用于抑制高速信号线产生的电磁波向外辐射发射。

C1、C2为滤波电容,给干扰提供低阻抗的回流路径,能有效减小对外的共模电流以同时对外界干扰能够滤波;电容容值选取范围为22PF~1000pF,典型值选取100pF;若信号线对金属外壳有绝缘耐压要求,那么差分线对地的两个滤波电容需要考虑耐压;
当电路上有多个节点时要考虑降低或去掉滤波电容的值。C3为接口地和数字地之间的跨接电容,典型取值为1000pF, C3容值可根据测试情况进行调整;
(2) 电路防雷设计要点:
为了达到IEC61000-4-5或GB17626.5标准,共模6KV,差模2KV的防雷测试要求,D4为三端气体放电管组成第一级防护电路,用于抑制线路上的共模以及差模浪涌干扰,防止干扰通过信号线影响下一级电路;
气体放电管标称电压VBRW要求大于13V,峰值电流IPP要求大于等于143A;
峰值功率WPP要求大于等于1859W;
PTC1、PTC2为热敏电阻组成第二级防护电路,典型取值为10Ω/2W;
为保证气体放电管能顺利的导通,泄放大能量必须增加此电阻进行分压,确保大部分能量通过气体放电管走掉;

热敏电阻器的电阻值是随外界温度而变化的。它的文字符号是“RT”。
热敏电阻简介:热敏电阻是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻(PTC)和负温度系数热敏电阻(NTC)。热敏电阻的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。正温度系数热敏电阻(PTC)在温度越高时电阻值越大,负温度系数热敏电阻(NTC)在温度越高时电阻值越低,它们同属于半导体器件。

D1~D3为TSS管(半导体放电管)组成第三级防护电路,TSS管标称电压VBRW要求大于8V,峰值电流IPP要求大于等于143A;峰值功率WPP要求大于等于1144W;

TSS半导体放电管是属于固体放电管,是一种开关型的浪涌过压保护器件!它的工作原理类似于晶闸管,依靠PN结的击穿电流触发器件导通放电,导通一定的时间后呈低阻状态,从而可以流过很大的浪涌电流或脉冲电流;当浪涌脉冲过后,电压要低于它的断流电压才能恢复到开路状态。
3.接口电路设计备注:
如果设备为金属外壳,同时单板可以独立的划分出接口地,那么金属外壳与接口地直接电气连接,且单板地与接口地通过1000pF电容相连;
如果设备为非金属外壳,那么接口地PGND与单板数字地GND直接电气连接。

四: PCB设计

1. RS485接口电路布局

方案特点:
(1)防护器件及滤波器件要靠近接口位置处摆放且要求摆放紧凑整齐,按照先防护后滤波的规则,走线时要尽量避免走线曲折的情况;
(2) 共模电感与跨接电容要置于隔离带中。
方案分析:
(1)接口及接口滤波防护电路周边不能走线且不能放置高速或敏感的器件;
(2) 隔离带下面投影层要做掏空处理,禁止走线。
2. RS485接口电路分地设计
方案特点:
(1)为了抑制内部单板噪声通过RS485接口向外传导辐射,也为了增强单板对外部干扰的抗扰能力,在RS485接口处增加滤波器件进行抑制,以滤波器件位置大小为界,划分出接口地;
(2)隔离带中可以选择性的增加电容作为两者地之间的连接,电容C4、C5取值建议为1000pF,信号线上串联共模电感CM与电容滤波,并与接口地并联GDT和TVS管进行防护;且所有防护器件都靠近接口放置,共模电感CM置于隔离带内,具体布局如图示。
方案分析:
(1)当接口与单板存在相容性较差或不相容的电路时,需要在接口与单板之间进行“分地”处理,即根据不同的端口电压、电平信号和传输速率来分别设置地线。“分地”,可以防止不相容电路的回流信号的叠加,防止公共地线阻抗耦合;
(2)“分地”现象会导致回流信号跨越隔离带时阻抗变大,从而引起极大的EMC风险,因此在隔离带间通过电容来给信号提供回流路径。

更多内容就在硬件帮!

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/123899.html

相关文章

  • 关于STM32 RS485控制I/O口不能正常输出高低电平的解决方法

    摘要:当单片机要接收数据的时候,控制为低电平,数据通过接收回来。检测通过万用表测量控制的引脚一直处于高电平,即使函数就单独写将该引脚为低电平,测量出来还是高电平。 一、问题: 问题现象:在进行RS485操作时,发现接收时而进时而不进中断: 将485的AB输出脚直接与串口的TX,RX对接发现串...

    null1145 评论0 收藏0
  • 基于UCOSII的RS485通信(STM32F107)

    摘要:为了可靠工作,在总线状态切换时需要做适当延时,再进行数据收发。 一、实现效果         基于ucosii实时操作系统的RS485通信,采用USART + DMA进行收发,  二、开发环境 开发工具:KEIL V5开发板: STM32f107RC采用方式:USART + DMA使用系统:...

    verano 评论0 收藏0
  • 基于uart的RS232和RS485总线

    摘要:和总线其实本质就是只不过是在物理电气层做了一些相关协议。针对出现的问题,一些牛逼的组织就制定了一些协议和标准就出现了和总线 我们之前讲uart的时候就已经提过一个问...

    Snailclimb 评论0 收藏0
  • 【STM32】标准库与HAL库对照学习教程八--串口通信详解

    摘要:异步通信与同步通信异步通信异步通信是指通信的发送与接收设备使用各自的时钟控制数据的发送和接收过程。同步通信同步通信时要建立发送方时钟对接收方时钟的直接控制,使双方达到完全同步。配置串口设置为异步通信基础参数波特率为。 ...

    yck 评论0 收藏0
  • 02_基于西门子CM1241的ModbusRTU串口通讯实现

    摘要:但是我对此协议并不熟悉,本文便以测试为目的基于西门子模块主站,采用通讯协议与温湿度传感器从站通讯获取数据。 文章目录 前言 一、前期准备 二、编写通讯程序 1.通讯测试工具和软件 2.编写TIA Portal程序 三、基于OPC UA的通讯传输 总结 前言 最近作者在...

    不知名网友 评论0 收藏0

发表评论

0条评论

王伟廷

|高级讲师

TA的文章

阅读更多
最新活动
阅读需要支付1元查看
<