摘要:使这个字母算式成立的解法只有这一种。在中用内置的函数进行字符串形式的算式值的评估在中判断字符串表达式是否合法依据的规则是多位数字的操作数的第一个字母不能为。上一篇平方根数字下一篇国名接龙本系列总目录参见程序员的算法趣题详细分析和全解
目录
所谓字母算式,就是用字母表示的算式,规则是相同字母对应相同数字,不同字母对应不同数字,并且第一位字母的对应数字不能是 0。
譬如给定算式 We * love = CodeIQ,则可以对应填上下面这些数字以使之成立。
W = 7, e = 4, l = 3, o = 8, v = 0, C = 2, d = 1, I = 9, Q = 6
这样一来,我们就能得到 74 * 3804 = 281496 这样的等式。使这个字母算式成立的解法只有这一种。
求使下面这个字母算式成立的解法有多少种?
READ + WRITE + TALK = SKILL
本题解着眼于通用的解决方案,即不仅限于以上表达式,而是任意的字符串表达式(前提式的确能够代表合法的算法,比如说运算符不能连续出现,等等)。
基本步骤如下:
Step1: 从输入字符串中提取出表示数字(即除运算符和等号外)(不重复, or unique)字符集合
Step2: 遍历以上所有字符与数字(0~9)的映射方式,假定有k个字符,则有P(10,k)中排列,每一种排列对应一种映射方式
Step2-1将每一种映射方式代入到输入字符串得到字符串算式
Step2-2 判断所得到的字符串算式是否是合法的
Step2-3 分别评估字符串算式的LHS(Left-hand-side:左手边表达式)和RHS(Right-hand-side:右手边表达式)并判断是否相等
在Step2中用python itertools模块中的permutation()生成所有的组合。
在Step2-3中用pyhton内置的eval()函数进行字符串形式的算式值的评估
在 Step2-2中判断字符串表达式是否合法依据的规则是多位数字的操作数的第一个字母不能为0。首先基于‘=’的位置分割得到LHS和RHS。
RHS中因为没有运算符所以比较简单,只要有多位数字(长度大于1)且首位为0就表示是非法表达式。
LHS的情况比较复杂,分以下三种情况考虑:
当然以上判断方法是基于原输入字符串表达式肯定可以表达成一个合法的算式,比如不会有两个连续的运算符出现,等等。
# -*- coding: utf-8 -*-"""Created on Sun Sep 5 08:39:27 2021@author: chenxy"""import sysimport timeimport datetimeimport math# import randomfrom typing import List# from queue import Queue# from collections import dequeimport itertools as itclass Solution: def stringEquation(self, strEqu:str): """ strEqu: Equation in the form of string with character representing digit, assuming case insensitive. Also it is assumed that only integer division is considered :ret: The total number of IP satisfying the requirement """ # Step1: extract the alphabeta characters from the string equation s = strEqu.upper() # Transfer to all uppercase for the convenience of processing cLst = [] for k in range(len(s)): if s[k].isalpha() and s[k] not in cLst: cLst.append(s[k]) if s[k] == "=": equalSignIndex = k # print(cLst) nums = 0 mapping = [] for p in it.permutations([k for k in range(10)], len(cLst)): # print(p) # Substitute c<->digit mapping back to the input string equation # left-hand-side expression, before "=" lhs = s[0:equalSignIndex] for k in range(len(cLst)): lhs = lhs.replace(cLst[k], str(p[k])) # right-hand-side expression, after "=" rhs = s[equalSignIndex+1:] for k in range(len(cLst)): rhs = rhs.replace(cLst[k], str(p[k])) # print(lhs, rhs) if len(rhs) > 1 and rhs[0] == "0" : # The first digit must be non-zero in multi-digit case # print("1") continue if len(lhs) > 1 and lhs[0] == "0" and lhs[1].isdigit(): # print("2") continue if not lhs[-1].isdigit(): # print("3", lhs, lhs[-1].isdigit() ) continue lhs_valid = True for k in range(len(lhs)-2): if (not lhs[k].isdigit()) and lhs[k+1]=="0" and lhs[k+2].isdigit(): # print("invalid lhs:", lhs) lhs_valid = False break if not lhs_valid: continue # print("valid:", lhs, rhs, eval(lhs), eval(rhs)) if eval(lhs) == eval(rhs): nums = nums + 1 mapping.append((cLst,p,lhs+"="+rhs)) return nums, mapping
if __name__ == "__main__": sln = Solution() tStart = time.time() strEqu = "A*B=C" nums, mapping = sln.stringEquation(strEqu) tCost = time.time() - tStart print("nums={0}, tCost = {1:6.3f}(sec)".format(nums,tCost)) for item in mapping: print("/t",item) tStart = time.time() strEqu = "We*love=CodeIQ" nums, mapping = sln.stringEquation(strEqu) tCost = time.time() - tStart print("nums={0}, tCost = {1:6.3f}(sec)".format(nums,tCost)) for item in mapping: print("/t",item) tStart = time.time() strEqu = "READ+WRITE+TALK=SKILL" nums, mapping = sln.stringEquation(strEqu) tCost = time.time() - tStart print("nums={0}, tCost = {1:6.3f}(sec)".format(nums,tCost)) for item in mapping: print("/t",item)
nums=10, tCost = 46.159(sec)
(["R", "E", "A", "D", "W", "I", "T", "L", "K", "S"], (1, 6, 3, 2, 4, 9, 7, 8, 0, 5), "1632+41976+7380=50988")
(["R", "E", "A", "D", "W", "I", "T", "L", "K", "S"], (2, 5, 4, 3, 7, 0, 6, 9, 1, 8), "2543+72065+6491=81099")
(["R", "E", "A", "D", "W", "I", "T", "L", "K", "S"], (4, 9, 0, 5, 2, 6, 8, 1, 7, 3), "4905+24689+8017=37611")
(["R", "E", "A", "D", "W", "I", "T", "L", "K", "S"], (5, 0, 9, 4, 7, 3, 1, 6, 2, 8), "5094+75310+1962=82366")
(["R", "E", "A", "D", "W", "I", "T", "L", "K", "S"], (5, 0, 9, 6, 3, 7, 1, 8, 2, 4), "5096+35710+1982=42788")
(["R", "E", "A", "D", "W", "I", "T", "L", "K", "S"], (5, 1, 8, 0, 6, 9, 2, 4, 3, 7), "5180+65921+2843=73944")
(["R", "E", "A", "D", "W", "I", "T", "L", "K", "S"], (5, 2, 7, 0, 8, 1, 3, 6, 4, 9), "5270+85132+3764=94166")
(["R", "E", "A", "D", "W", "I", "T", "L", "K", "S"], (7, 0, 9, 2, 3, 5, 1, 8, 6, 4), "7092+37510+1986=46588")
(["R", "E", "A", "D", "W", "I", "T", "L", "K", "S"], (7, 0, 9, 2, 4, 3, 1, 8, 6, 5), "7092+47310+1986=56388")
(["R", "E", "A", "D", "W", "I", "T", "L", "K", "S"], (9, 7, 2, 8, 1, 4, 6, 0, 5, 3), "9728+19467+6205=35400")
以上虽然得出的正确的结果,但是运行速度有点衰,需要考虑进一步的优化。
上一篇:Q12: 平方根数字
下一篇:Q14: 国名接龙
本系列总目录参见:程序员的算法趣题:详细分析和Python全解
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/119273.html
摘要:所幸,满足平方根前十位数字正好让的数字全部出现的数是存在的。上一篇斐波那契数列下一篇满足字母算式的解法本系列总目录参见程序员的算法趣题详细分析和全解 目录 1. 问题描述 2. 解题分析 3. 代码及测试 1. 问题描述 求在计算平方根的时候,最早让0~9的数字全部出现的最...
摘要:能以最少交换次数到达升序有序排列记为的数列记为就等价于从代表的节点在这张图中到达对应的节点的最短路径长度。上一篇质数矩阵质数矩阵下一篇唯一的序列本系列总目录参见程序员的算法趣题详细分析和全解程序员的算法趣题详细分析和全解 目录 1. 问题描述 2. 解题分析 3. 代码及测试 4. 后记 ...
摘要:中的统一的终点是全白状态。比如说,的第个数恰好是,它可以由根据题设规则重排而得。上一篇填充白色填充白色下一篇优雅的地址本系列总目录参见程序员的算法趣题详细分析和全解程序员的算法趣题详细分析和全解 目录 1. 问题描述 2. 解题分析 2.1 Naive Approach--正向全量搜索 ...
阅读 2162·2021-11-15 11:38
阅读 1128·2021-09-06 15:02
阅读 3346·2021-08-27 13:12
阅读 1258·2019-08-30 14:20
阅读 2360·2019-08-29 15:08
阅读 612·2019-08-29 14:08
阅读 1703·2019-08-29 13:43
阅读 1430·2019-08-26 12:11